16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Qiliqiangxin attenuates hypoxia‐induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF‐1α‐dependent glycolysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre‐treated with QL (0.5 mg/mL) and/or HIF‐1α siRNA were cultured in a three‐gas hypoxic incubator chamber (5% CO 2, 1% O 2, 94% N 2) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF‐1α‐dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF‐1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up‐regulating HIF‐1α and a series of glycolysis‐relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6‐phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF‐1α‐dependent manner. Lastly, the results suggested that QL‐dependent enhancement of HIF‐1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF‐1α pathway, and we speculated that QL also improved HIF‐1α stabilization through down‐regulating prolyl hydroxylases 3 (PHD3) expression.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose transporters in the 21st Century.

          The ability to take up and metabolize glucose at the cellular level is a property shared by the vast majority of existing organisms. Most mammalian cells import glucose by a process of facilitative diffusion mediated by members of the Glut (SLC2A) family of membrane transport proteins. Fourteen Glut proteins are expressed in the human and they include transporters for substrates other than glucose, including fructose, myoinositol, and urate. The primary physiological substrates for at least half of the 14 Glut proteins are either uncertain or unknown. The well-established glucose transporter isoforms, Gluts 1-4, are known to have distinct regulatory and/or kinetic properties that reflect their specific roles in cellular and whole body glucose homeostasis. Separate review articles on many of the Glut proteins have recently appeared in this journal. Here, we provide a very brief summary of the known properties of the 14 Glut proteins and suggest some avenues of future investigation in this area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications.

            The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings showing the association of diabetes with heart failure; clinical studies confirming the association of diabetes with left ventricular dysfunction independent of hypertension, coronary artery disease, and other heart disease; and experimental evidence of myocardial structural and functional changes. The most important mechanisms of diabetic cardiomyopathy are metabolic disturbances (depletion of glucose transporter 4, increased free fatty acids, carnitine deficiency, changes in calcium homeostasis), myocardial fibrosis (association with increases in angiotensin II, IGF-I, and inflammatory cytokines), small vessel disease (microangiopathy, impaired coronary flow reserve, and endothelial dysfunction), cardiac autonomic neuropathy (denervation and alterations in myocardial catecholamine levels), and insulin resistance (hyperinsulinemia and reduced insulin sensitivity). This review presents evidence that diabetes is associated with a cardiomyopathy, independent of comorbid conditions, and that metabolic disturbances, myocardial fibrosis, small vessel disease, cardiac autonomic neuropathy, and insulin resistance may all contribute to the development of diabetic heart disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate.

              Hypoxia-Inducible Factor-1 (HIF-1) has been largely studied for its role in cell survival in hypoxic conditions. The regulation of HIF-1 is a complex process and involves a number of molecules and pathways. Among these mechanisms a direct regulatory role of reactive oxygen species (ROS) on HIF-1 alpha subunit has received a great deal of attention and the existing body of literature includes many contradictory findings. Other intermediates such as nitric oxide (NO), specific microRNAs (miR), and transcriptional and post-translational modification have also been implicated as players in ROS mediated HIF-1a regulation. The focus of this review is to present the past conflicting evidence along with more recent findings in order to relate various aspects of this complex process. Aside from the direct role of ROS on HIF-1a regulation under hypoxia and normoxia, we analyzed the effect of different sources and concentrations of NO and the interplay between superoxide (SO) and NO in this process. We also present findings on transcriptional and translational regulation of HIF-1a via ROS and the interplay with microRNAs in this process. This review further provides insight on ERK and PI3K/AKT signaling as a common mechanism relating several pathways of ROS mediated HIF-1a regulation. Ultimately further research and discovery regarding HIF-1 regulation by oxidative stress is warranted for better understanding of disease development and potential therapeutics for pathologies such as cancer, inflammatory diseases, and ischemia-reperfusion injury.
                Bookmark

                Author and article information

                Contributors
                zhou.jingmin@zs-hospital.sh.cn
                jbge@zs-hospital.sh.cn
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                04 March 2018
                May 2018
                : 22
                : 5 ( doiID: 10.1111/jcmm.2018.22.issue-5 )
                : 2791-2803
                Affiliations
                [ 1 ] Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
                [ 2 ] Department of Cardiology Zoucheng Hospital Affiliated Hospital of Jining medical university Jinan Shandong China
                Author notes
                [*] [* ] Correspondence

                Jingmin Zhou and Junbo Ge

                Email: zhou.jingmin@ 123456zs-hospital.sh.cn and jbge@ 123456zs-hospital.sh.cn

                Author information
                http://orcid.org/0000-0003-3751-6484
                http://orcid.org/0000-0002-8318-4882
                Article
                JCMM13572
                10.1111/jcmm.13572
                5908112
                29502357
                39699d8b-90be-443e-81da-3be946205f53
                © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 June 2017
                : 02 January 2018
                Page count
                Figures: 6, Tables: 1, Pages: 13, Words: 6613
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                jcmm13572
                May 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.3.4 mode:remove_FC converted:19.04.2018

                Molecular medicine
                cardiac microvascular endothelial cells,glucose metabolism,hif‐1α,hypoxia injury,qiliqiangxin

                Comments

                Comment on this article