50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Splenium of Corpus Callosum: Patterns of Interhemispheric Interaction in Children and Adults

      review-article
      1 , 2 , *
      Neural Plasticity
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic causal modelling.

          In this paper we present an approach to the identification of nonlinear input-state-output systems. By using a bilinear approximation to the dynamics of interactions among states, the parameters of the implicit causal model reduce to three sets. These comprise (1) parameters that mediate the influence of extrinsic inputs on the states, (2) parameters that mediate intrinsic coupling among the states, and (3) [bilinear] parameters that allow the inputs to modulate that coupling. Identification proceeds in a Bayesian framework given known, deterministic inputs and the observed responses of the system. We developed this approach for the analysis of effective connectivity using experimentally designed inputs and fMRI responses. In this context, the coupling parameters correspond to effective connectivity and the bilinear parameters reflect the changes in connectivity induced by inputs. The ensuing framework allows one to characterise fMRI experiments, conceptually, as an experimental manipulation of integration among brain regions (by contextual or trial-free inputs, like time or attentional set) that is revealed using evoked responses (to perturbations or trial-bound inputs, like stimuli). As with previous analyses of effective connectivity, the focus is on experimentally induced changes in coupling (cf., psychophysiologic interactions). However, unlike previous approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown and stochastic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging.

            Several tracing studies have established a topographical distribution of fiber connections to the cortex in midsagittal cross-sections of the corpus callosum (CC). The most prominent example is Witelson's scheme, which defines five vertical partitions mainly based on primate data. Conventional MRI of the human CC does not reveal morphologically discernable structures, although microscopy techniques identified myelinated axons with a relatively small diameter in the anterior and posterior third of the CC as opposed to thick fibers in the midbody and posterior splenium. Here, we applied diffusion tensor imaging (DTI) in conjunction with a tract-tracing algorithm to gain cortical connectivity information of the CC in individual subjects. With DTI-based tractography, we distinguished five vertical segments of the CC, containing fibers projecting into prefrontal, premotor (and supplementary motor), primary motor, and primary sensory areas as well as into parietal, temporal, and occipital cortical areas. Striking differences to Witelson's classification were recognized in the midbody and anterior third of the CC. In particular, callosal motor fiber bundles were found to cross the CC in a much more posterior location than previously indicated. Differences in water mobility were found to be in qualitative agreement with differences in the microstructure of transcallosal fibers yielding the highest anisotropy in posterior regions of the CC. The lowest anisotropy was observed in compartments assigned to motor and sensory cortical areas. In conclusion, DTI-based fiber tractography of healthy human subjects suggests a modification of the widely accepted Witelson scheme and a new classification of vertical CC partitions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A predisposition for biological motion in the newborn baby.

              An inborn predisposition to attend to biological motion has long been theorized, but had so far been demonstrated only in one animal species (the domestic chicken). In particular, no preference for biological motion was reported for human infants of <3 months of age. We tested 2-day-old babies' discrimination after familiarization and their spontaneous preferences for biological vs. nonbiological point-light animations. Newborns were shown to be able to discriminate between two different patterns of motion (Exp. 1) and, when first exposed to them, selectively preferred to look at the biological motion display (Exp. 2). This preference was also orientation-dependent: newborns looked longer at upright displays than upside-down displays (Exp. 3). These data support the hypothesis that detection of biological motion is an intrinsic capacity of the visual system, which is presumably part of an evolutionarily ancient and nonspecies-specific system predisposing animals to preferentially attend to other animals.
                Bookmark

                Author and article information

                Journal
                Neural Plast
                Neural Plast
                NP
                Neural Plasticity
                Hindawi Publishing Corporation
                2090-5904
                1687-5443
                2013
                13 March 2013
                : 2013
                : 639430
                Affiliations
                1LREN, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, CH-1011 Lausanne, Switzerland
                2Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, CH-1011 Lausanne, Switzerland
                Author notes
                *Maria G. Knyazeva: maria.knyazeva@ 123456chuv.ch

                Academic Editor: Maurice Ptito

                Article
                10.1155/2013/639430
                3610378
                23577273
                396bb32a-19f3-412a-8981-78845d790d21
                Copyright © 2013 Maria G. Knyazeva.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 December 2012
                : 8 February 2013
                : 9 February 2013
                Categories
                Review Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article