16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Invariant Natural Killer T Cell Agonist Modulates Experimental Focal and Segmental Glomerulosclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis (FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T (iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin(ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1α, IL-1β, IL-17, TNF-α, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-β analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-β could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-β, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-β through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides.

          Natural killer T (NKT) lymphocytes express an invariant T cell antigen receptor (TCR) encoded by the Valpha14 and Jalpha281 gene segments. A glycosylceramide-containing alpha-anomeric sugar with a longer fatty acyl chain (C26) and sphingosine base (C18) was identified as a ligand for this TCR. Glycosylceramide-mediated proliferative responses of Valpha14 NKT cells were abrogated by treatment with chloroquine-concanamycin A or by monoclonal antibodies against CD1d/Vbeta8, CD40/CD40L, or B7/CTLA-4/CD28, but not by interference with the function of a transporter-associated protein. Thus, this lymphocyte shares distinct recognition systems with either T or NK cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of Natural Killer T Cells by α-Galactosylceramide Rapidly Induces the Full Maturation of Dendritic Cells In Vivo and Thereby Acts as an Adjuvant for Combined CD4 and CD8 T Cell Immunity to a Coadministered Protein

            The maturation of dendritic cells (DCs) allows these antigen-presenting cells to initiate immunity. We pursued this concept in situ by studying the adjuvant action of α-galactosylceramide (αGalCer) in mice. A single i.v. injection of glycolipid induced the full maturation of splenic DCs, beginning within 4 h. Maturation was manifest by marked increases in costimulator and major histocompatibility complex class II expression, interferon (IFN)-γ production, and stimulation of the mixed leukocyte reaction. These changes were not induced directly by αGalCer but required natural killer T (NKT) cells acting independently of the MyD88 adaptor protein. To establish that DC maturation was responsible for the adjuvant role of αGalCer, mice were given αGalCer together with soluble or cell-associated ovalbumin antigen. Th1 type CD4+ and CD8+ T cell responses developed, and the mice became resistant to challenge with ovalbumin-expressing tumor. DCs from mice given ovalbumin plus adjuvant, but not the non-DCs, stimulated ovalbumin-specific proliferative responses and importantly, induced antigen-specific, IFN-γ producing, CD4+ and CD8+ T cells upon transfer into naive animals. In the latter instance, immune priming did not require further exposure to ovalbumin, αGalCer, NKT, or NK cells. Therefore a single dose of αGalCer i.v. rapidly stimulates the full maturation of DCs in situ, and this accounts for the induction of combined Th1 CD4+ and CD8+ T cell immunity to a coadministered protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adriamycin nephropathy: a model of focal segmental glomerulosclerosis.

              Adriamycin nephropathy (AN) is a rodent model of chronic kidney disease that has been studied extensively and has enabled a greater understanding of the processes underlying the progression of chronic proteinuric renal disease. AN is characterized by podocyte injury followed by glomerulosclerosis, tubulointerstitial inflammation and fibrosis. Genetic studies have demonstrated a number of loci that alter both risk and severity of renal injury induced by Adriamycin. Adriamycin-induced renal injury has been shown in numerous studies to be modulated by both non-immune and immune factors, and has facilitated further study of mechanisms of tubulointerstitial injury. This review will outline the pharmacological behaviour of Adriamycin, and describe in detail the model of AN, including its key structural characteristics, genetic susceptibility and pathogenesis. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                12 March 2012
                : 7
                : 3
                : e32454
                Affiliations
                [1 ]Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
                [2 ]Unidade de Transplante Renal, Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brasil
                [3 ]Department of Chemistry and Biochemistry Brigham Young University, Provo, Utah, United States of America
                [4 ]Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brasil
                [5 ]Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
                Fondazione IRCCS Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Italy
                Author notes

                Conceived and designed the experiments: ACK. Performed the experiments: RLP VOR BB. Analyzed the data: ACK RLP VOR NOSC. Contributed reagents/materials/analysis tools: ACK PBS APS NOSC MFS MAC PS CDO. Wrote the paper: ACK.

                Article
                PONE-D-11-09691
                10.1371/journal.pone.0032454
                3299669
                22427838
                396d0129-ab3d-431f-93e2-56ccdcdba29d
                Pereira et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 May 2011
                : 30 January 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Immunology
                Immunity
                Molecular Cell Biology
                Medicine
                Nephrology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article