23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of interleukin-15 in mice promotes resistance to diet-induced obesity, increased insulin sensitivity, and markers of oxidative skeletal muscle metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interleukin-15 (IL-15) is a cytokine that is highly expressed in skeletal muscle. In addition to its well-characterized effects on innate immunity, IL-15 has been proposed to modulate skeletal muscle and adipose tissue mass, as well as insulin sensitivity. In the present study, an IL-15 gain-of-function model, transgenic mice with skeletal muscle-specific oversecretion of IL-15 (IL-15 Tg mice), was utilized to test the hypotheses that IL-15 promotes insulin sensitivity and resistance to diet-induced obesity (DIO) by increasing circulating adiponectin levels, and that IL-15 regulates skeletal muscle metabolism without inducing overt muscle hypertrophy. Compared to closely related control mice, IL-15 Tg mice exhibited lower total body fat following high-fat feeding, lower intra-abdominal fat following both low- and high-fat feeding, and greater insulin sensitivity. However, this was not accompanied by increased total or high molecular weight serum adiponectin levels in IL-15 Tg mice. While overall lean body mass did not differ, IL-15 Tg mice exhibited increased mass of the oxidative soleus muscle, and increased expression of mRNA encoding the slow isoform of troponin I (TnnI 1) in the predominately glycolytic extensor digitorum longus muscle. Skeletal muscle tissue from IL-15 Tg mice also exhibited alterations in the expression of several genes associated with fatty acid metabolism, such as SIRT1, SIRT4, and uncoupling protein 2 (UCP2). These findings suggest changes in oxidative metabolism, rather than induction of adiponectin expression, appear to be responsible for the DIO-resistant and more insulin-sensitive phenotype of IL-15 Tg mice.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt.

          It is intuitive to speculate that nutrient availability may influence differentiation of mammalian cells. Nonetheless, a comprehensive complement of the molecular determinants involved in this process has not been elucidated yet. Here, we have investigated how nutrients (glucose) affect skeletal myogenesis. Glucose restriction (GR) impaired differentiation of skeletal myoblasts and was associated with activation of the AMP-activated protein kinase (AMPK). Activated AMPK was required to promote GR-induced transcription of the NAD+ biosynthetic enzyme Nampt. Indeed, GR augmented the Nampt activity, which consequently modified the intracellular [NAD+]:[NADH] ratio and nicotinamide levels, and mediated inhibition of skeletal myogenesis. Skeletal myoblasts derived from SIRT1+/- heterozygous mice were resistant to the effects of either GR or AMPK activation. These experiments reveal that AMPK, Nampt, and SIRT1 are the molecular components of a functional signaling pathway that allows skeletal muscle cells to sense and react to nutrient availability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.

            Insulin resistance and its dreaded consequence, type 2 diabetes, are major causes of atherosclerosis. Adiponectin is an adipose-specific plasma protein that possesses anti-atherogenic properties, such as the suppression of adhesion molecule expression in vascular endothelial cells and cytokine production from macrophages. Plasma adiponectin concentrations are decreased in obese and type 2 diabetic subjects with insulin resistance. A regimen that normalizes or increases the plasma adiponectin might prevent atherosclerosis in patients with insulin resistance. In this study, we demonstrate the inducing effects of thiazolidinediones (TZDs), which are synthetic PPARgamma ligands, on the expression and secretion of adiponectin in humans and rodents in vivo and in vitro. The administration of TZDs significantly increased the plasma adiponectin concentrations in insulin resistant humans and rodents without affecting their body weight. Adiponectin mRNA expression was normalized or increased by TZDs in the adipose tissues of obese mice. In cultured 3T3-L1 adipocytes, TZD derivatives enhanced the mRNA expression and secretion of adiponectin in a dose- and time-dependent manner. Furthermore, these effects were mediated through the activation of the promoter by the TZDs. On the other hand, TNF-alpha, which is produced more in an insulin-resistant condition, dose-dependently reduced the expression of adiponectin in adipocytes by suppressing its promoter activity. TZDs restored this inhibitory effect by TNF-alpha. TZDs might prevent atherosclerotic vascular disease in insulin-resistant patients by inducing the production of adiponectin through direct effect on its promoter and antagonizing the effect of TNF-alpha on the adiponectin promoter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994.

              To evaluate the prevalence and time trends for diagnosed and undiagnosed diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults by age, sex, and race or ethnic group, based on data from the Third National Health and Nutrition Examination Survey, 1988-1994 (NHANES III) and prior Health and Nutrition Examination Surveys (HANESs). NHANES III contained a probability sample of 18,825 U.S. adults > or = 20 years of age who were interviewed to ascertain a medical history of diagnosed diabetes, a subsample of 6,587 adults for whom fasting plasma glucose values were obtained, and a subsample of 2,844 adults between 40 and 74 years of age who received an oral glucose tolerance test. The Second National Health and Nutrition Examination Survey, 1976-1980, and Hispanic HANES used similar procedures to ascertain diabetes. Prevalence was calculated using the 1997 American Diabetes Association fasting plasma glucose criteria and the 1980-1985 World Health Organization (WHO) oral glucose tolerance test criteria. Prevalence of diagnosed diabetes in 1988-1994 was estimated to be 5.1% for U.S. adults > or = 20 years of age (10.2 million people when extrapolated to the 1997 U.S. population). Using American Diabetes Association criteria, the prevalence of undiagnosed diabetes (fasting plasma glucose > or = 126 mg/dl) was 2.7% (5.4 million), and the prevalence of impaired fasting glucose (110 to < 126 mg/dl) was 6.9% (13.4 million). There were similar rates of diabetes for men and women, but the rates for non-Hispanic blacks and Mexican-Americans were 1.6 and 1.9 times the rate for non-Hispanic whites. Based on American Diabetes Association criteria, prevalence of diabetes (diagnosed plus undiagnosed) in the total population of people who were 40-74 years of age increased from 8.9% in the period 1976-1980 to 12.3% by 1988-1994. A similar increase was found when WHO criteria were applied (11.4 and 14.3%). The high rates of abnormal fasting and postchallenge glucose found in NHANES III, together with the increasing frequency of obesity and sedentary lifestyles in the population, make it likely that diabetes will continue to be a major health problem in the U.S.
                Bookmark

                Author and article information

                Journal
                101526749
                37564
                Int J Interferon Cytokine Mediat Res
                Int J Interferon Cytokine Mediat Res
                International journal of interferon, cytokine and mediator research
                1179-139X
                29 June 2016
                18 April 2011
                2011
                20 September 2017
                : 3
                : 29-42
                Affiliations
                [1 ]Geriatric Research, Education, and Clinical Center, Seattle, WA, USA
                [2 ]Research Service, VA Puget Sound Health Care System, Seattle, WA, USA
                [3 ]Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
                [4 ]Seattle Institute for Biomedical and Clinical Research, Seattle, WA, USA
                [5 ]Department of Physiology, University of Pennsylvania, PA, USA
                [6 ]Pennsylvania Muscle Institute, University of Pennsylvania, PA, USA
                Author notes
                Correspondence: LeBris S Quinn, S-182 GRECC, VA Puget Sound Health Care System,1660 S Columbian Way, Seattle, WA 98108, USA, Tel +1 206 277 5552, Fax +1 206 768 5200, quinnl@ 123456uw.edu
                Article
                NIHMS798377
                10.2147/IJICMR.S19007
                5605924
                28943758
                397a3f09-bd36-4ca1-a767-7b89ea594aa3

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                Categories
                Article

                interleukin-15,skeletal muscle,obesity,adiponectin,ucp2,sirtuins

                Comments

                Comment on this article