17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Galvanic Vestibular Stimulation Produces Sensations of Rotation Consistent with Activation of Semicircular Canal Afferents

      review-article
      1 , 1
      Frontiers in Neurology
      Frontiers Research Foundation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Galvanic Vestibular Stimulation (GVS) is a simple method for evoking sensations of movement (Fitzpatrick and Day, 2004). It involves passing small currents, typically <5 mA, across the mastoid processes. A recent article by Cohen et al. (2012) discussed the mechanism of action of GVS. The authors concluded that although GVS excites both otolith and semicircular canal afferents, only otolith-related behavioral responses are induced. Specifically, it was stated that human subjects “…do not experience sensations of rotation and do not display ocular nystagmus, which would occur if the semicircular canals were continuously stimulated.” However, a growing body of evidence from perceptual, oculomotor, and whole-body experiments confirms that GVS does indeed produce sensations of rotation consistent with canal stimulation. Fitzpatrick et al. (2002) investigated the effect of binaural bipolar GVS upon the ability of supine subjects to report rotation around a vertical axis. When stimulation was applied concurrently with real rotation, subjects reported lesser, or greater movement depending on stimulus polarity. To minimize activation of the otoliths, the axis of (real) rotation was collinear with the midline between the ears. However, even when this axis was altered to produce a combination of translation and rotation, it did not change the effect of GVS upon perception. This suggests that GVS primarily influences the sensation of rotation, not translation. In a similar experiment, Day and Fitzpatrick (2005) determined the precise axis of this “virtual” rotation vector. Seated subjects adopted different head pitches while being spun on a rotary chair. Again, when GVS was applied, sensations of rotation could be increased or decreased in a polarity-dependent fashion. Maximal effects occurred when the naso-occipital axis was approximately co-linear with the axis of real rotation (i.e., with the head pitched fully up or down). With the head close to the neutral position, such that Reid’s plane was tilted 18.8° above horizontal (i.e., slight nose-up tilt), the effect of GVS upon rotation sensation was zero. This suggests that GVS evokes a sensation of head roll around a naso-occipital axis. Using a modeling approach, the authors elegantly demonstrated that this axis is a direct consequence of the anatomical orientation of the canals (Blanks et al., 1975). Based on the assumption that GVS modulates all vestibular afferents equally (Goldberg et al., 1984), they calculated the theoretical axis of head rotation when equal signals from all six canals are combined. It transpires that the resulting axis is naso-occipital, and elevated 16.4° relative to Reid’s plane. This tallies remarkably well with the data gained from the chair rotation experiment. Evoked eye movements corroborate these data. Many studies have described a torsional eye movement response to GVS (Schneider et al., 2000, 2002; Jahn et al., 2003; MacDougall et al., 2005). This consists not only of a fixed offset of eye position as one might expect from pure otolith activation, but contains alternating fast and slow phases, consistent with a canal-evoked nystagmus caused by head roll. Schneider et al. (2002) compared the ocular response to GVS with that caused by head roll. They found that GVS produced essentially the same eye movement as pure head rotation; i.e., torsional offset accompanied by nystagmus. This raises the possibility that both characteristics of the GVS-evoked eye movement can be explained entirely on the basis of rotation. Galvanic Vestibular Stimulation-evoked body movements agree with the perception and eye movement data. With the head tilted up or down GVS evokes locomotor turning (Fitzpatrick et al., 2006), and in standing subjects it induces vertical torque reactions (Reynolds, 2011). In the absence of somatosensory information GVS evokes a continuous body tilt response for the duration of the stimulus, rather than merely a fixed offset of body position (Day and Cole, 2002). Furthermore, prolonged stimuli evoke oscillating “nodding” lateral head responses, akin to ocular nystagmus (Wardman et al., 2003). These movements are consistent with a counteractive response to a sensation of continuous rotation, and cannot be readily attributed to sensations of tilt or linear acceleration. Nevertheless, the possibility of an otolith-based response has not been definitively excluded. Cathers et al. (2005) examined the effect of head pitch on GVS-evoked balance responses. Robust sway responses were observed with the head upright, but with the head tilted down the main balance response was abolished, leaving only a small transient sway. This transient response can be explained as a reaction to a sense of inter-aural linear acceleration, suggesting it can be attributed to otolith stimulation. However, a recent study examining the effect of head orientation on this response suggests it is not compatible with the anatomical properties of the otolith organs (Mian et al., 2010). This raises the possibility that weak trans-mastoidal current may also stimulate non-vestibular pathways to generate motor output. But regardless of the origin of the early transient response, it is dwarfed in magnitude by the later rotation-based movement consistent with canal stimulation. In summary, overwhelming evidence from perception, anatomy, modeling, oculomotor, and whole-body responses all converges toward the same conclusion: GVS is primarily interpreted by the brain as head roll, consistent with activation of semicircular canal afferents. Whether it also evokes sensations of tilt and/or linear acceleration, which would be indicative of otolith activation, is less certain (for a more comprehensive recent review, see St George and Fitzpatrick, 2011).

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Probing the human vestibular system with galvanic stimulation.

          Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey.

            Most vestibular nerve afferents can be classified as regularly or irregularly discharging. Two factors are theoretically identified as being potentially responsible for differences in discharge regularity. The first, ascribable to synaptic noise, is the variance (sigma v2) characterizing the transmembrane voltage fluctuations of the axon's spike trigger site, i.e., the place where impulses normally arise. The second factor is the slope (dmuv/dt) of the trigger site's postspike recovery function. Were (dmuv/dt) a major determinant of discharge regularity, the theory predicts that the more irregular the discharge of a unit, the greater should be its sensitivity to externally applied galvanic currents and the faster should be the postspike recovery of its electrical excitability. The predictions would not hold if differences in the discharge regularity between units largely reflected variations in sigma v. To test these predictions, the responses of vestibular nerve afferents to externally applied galvanic currents were studied in the barbiturate-anesthetized squirrel monkey. Current steps of 5-s duration and short (50 microsecond) shocks were delivered by way of the perilymphatic space of the vestibule. Results were similar regardless of which end organ an afferent innervated. The regularity of discharge of each unit was expressed by a normalized coefficient of variation (CV*). The galvanic sensitivity (beta p) of a unit, measured from its response to current steps, was linearly related to discharge regularity (CV*), there being approximately 20-fold variations in both variables across the afferent population. Various geometric factors--including fiber diameter, position of individual axons within the various nerve branches, and the configuration of unmyelinated processes within the sensory epithelium--are unlikely to have made a major contribution to the positive relation between beta P and CV*. The postspike recovery of electrical excitability was measured as response thresholds to shocks, synchronized to follow naturally occurring impulses at several different delays. Recovery in irregular units was more rapid than in regular units. Evidence is presented that externally applied currents acted at the spike trigger site rather than elsewhere in the sensory transduction process. We argue that the irregular discharge of some vestibular afferents offers no functional advantage in the encoding and transmission of sensory information. Rather, the irregularity of discharge is better viewed as a consequence of the enhanced sensitivity of these units to depolarizing influences, including afferent and efferent synaptic inputs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Otolith and canal reflexes in human standing.

              We used galvanic vestibular stimulation (GVS) to identify human balance reflexes of the semicircular canals and otolith organs. The experiment used a model of vestibular signals arising from GVS modulation of the net signal from vestibular afferents. With the head upright, the model predicts that the GVS-evoked canal signal indicates lateral head rotation while the otolith signal indicates lateral tilt or acceleration. Both signify body sway transverse to the head. With the head bent forward, the model predicts that the canal signal indicates body spin about a vertical axis but the otolith signal still signifies lateral body motion. Thus, we compared electromyograms (EMG) in the leg muscles and body sway evoked by GVS when subjects stood with the head upright or bent forward. With the head upright, GVS evoked a large sway in the direction of the anodal electrode. This response was abolished with the head bent forward leaving only small, oppositely directed, transient responses at the start and end of the stimulus. With the head upright, GVS evoked short-latency (60-70 ms), followed by medium-latency (120 ms) EMG responses, of opposite polarity. Bending the head forward abolished the medium-latency but preserved the short-latency response. This is compatible with GVS evoking separate otolithic and canal reflexes, indicating that balance is controlled by independent canal and otolith reflexes, probably through different pathways. We propose that the short-latency reflex and small transient sway are driven by the otolith organs and the medium-latency response and the large sway are driven by the semicircular canals.
                Bookmark

                Author and article information

                Journal
                Front Neurol
                Front Neurol
                Front. Neur.
                Frontiers in Neurology
                Frontiers Research Foundation
                1664-2295
                28 June 2012
                2012
                : 3
                : 104
                Affiliations
                [1] 1simpleSchool of Sport and Exercise Sciences, College of Life and Environmental Sciences, University of Birmingham Birmingham, UK
                Author notes

                Edited by: Miriam Welgampola, University of Sydney, Australia

                Reviewed by: Omar Mian, University College London, UK

                This article was submitted to Frontiers in Neuro-otology, a specialty of Frontiers in Neurology.

                Article
                10.3389/fneur.2012.00104
                3449488
                23015797
                397f081c-a1a5-446c-83ed-83fc6f52cd4d
                Copyright © 2012 Reynolds and Osler.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 07 May 2012
                : 11 June 2012
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 17, Pages: 2, Words: 1464
                Categories
                Neuroscience
                Opinion Article

                Neurology
                Neurology

                Comments

                Comment on this article