3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glucocorticoid Fast Feedback Inhibition of Stress-Induced ACTH Secretion in the Male Rat: Rate Independence and Stress-State Resistance

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Normal glucocorticoid secretion is critical for physiological and mental health. Glucocorticoid secretion is dynamically regulated by glucocorticoid-negative feedback; however, the mechanisms of that feedback process are poorly understood. We assessed the temporal characteristics of glucocorticoid-negative feedback in vivo using a procedure for drug infusions and serial blood collection in unanesthetized rats that produced a minimal disruption of basal ACTH plasma levels. We compared the negative feedback effectiveness present when stress onset coincides with corticosterone's (CORT) rapidly rising phase (30 sec pretreatment), high plateau phase (15 min pretreatment), or restored basal phase (60 min pretreatment) as well as effectiveness when CORT infusion occurs after the onset of stress (5 min poststress onset). CORT treatment prior to stress onset acted remarkably fast (within 30 sec) to suppress stress-induced ACTH secretion. Furthermore, fast feedback induction did not require rapid increases in CORT at the time of stress onset (hormone rate independent), and those feedback actions were relatively long lasting (≥15 min). In contrast, CORT elevation after stress onset produced limited and delayed ACTH suppression (stress state resistance). There was a parallel stress-state resistance for CORT inhibition of stress-induced Crh heteronuclear RNA in the paraventricular nucleus but not Pomc heteronuclear RNA in the anterior pituitary. CORT treatment did not suppress stress-induced prolactin secretion, suggesting that CORT feedback is restricted to the control of hypothalamic-pituitary-adrenal axis elements of a stress response. These temporal, stress-state, and system-level features of in vivo CORT feedback provide an important physiological context for ex vivo studies of molecular and cellular mechanisms of CORT-negative feedback.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators.

          Stress begins in the brain and affects the brain, as well as the rest of the body. Acute stress responses promote adaptation and survival via responses of neural, cardiovascular, autonomic, immune and metabolic systems. Chronic stress can promote and exacerbate pathophysiology through the same systems that are dysregulated. The burden of chronic stress and accompanying changes in personal behaviors (smoking, eating too much, drinking, poor quality sleep; otherwise referred to as "lifestyle") is called allostatic overload. Brain regions such as hippocampus, prefrontal cortex and amygdala respond to acute and chronic stress and show changes in morphology and chemistry that are largely reversible if the chronic stress lasts for weeks. However, it is not clear whether prolonged stress for many months or years may have irreversible effects on the brain. The adaptive plasticity of chronic stress involves many mediators, including glucocorticoids, excitatory amino acids, endogenous factors such as brain neurotrophic factor (BDNF), polysialated neural cell adhesion molecule (PSA-NCAM) and tissue plasminogen activator (tPA). The role of this stress-induced remodeling of neural circuitry is discussed in relation to psychiatric illnesses, as well as chronic stress and the concept of top-down regulation of cognitive, autonomic and neuroendocrine function. This concept leads to a different way of regarding more holistic manipulations, such as physical activity and social support as an important complement to pharmaceutical therapy in treatment of the common phenomenon of being "stressed out". Policies of government and the private sector play an important role in this top-down view of minimizing the burden of chronic stress and related lifestyle (i.e. allostatic overload).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism.

            Glucocorticoid negative feedback in the brain controls stress, feeding, and neural-immune interactions by regulating the hypothalamic-pituitary-adrenal axis, but the mechanisms of inhibition of hypothalamic neurosecretory cells have never been elucidated. Using whole-cell patch-clamp recordings in an acute hypothalamic slice preparation, we demonstrate a rapid suppression of excitatory glutamatergic synaptic inputs to parvocellular neurosecretory neurons of the hypothalamic paraventricular nucleus (PVN) by the glucocorticoids dexamethasone and corticosterone. The effect was maintained with dexamethasone conjugated to bovine serum albumin and was not seen with direct intracellular glucocorticoid perfusion via the patch pipette, suggesting actions at a membrane receptor. The presynaptic inhibition of glutamate release by glucocorticoids was blocked by postsynaptic inhibition of G-protein activity with intracellular GDP-beta-S application, implicating a postsynaptic G-protein-coupled receptor and the release of a retrograde messenger. The glucocorticoid effect was not blocked by the nitric oxide synthesis antagonist N(G)-nitro-L-arginine methyl ester hydrochloride or by hemoglobin but was blocked completely by the CB1 cannabinoid receptor antagonists AM251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] and AM281 [1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide] and mimicked and occluded by the cannabinoid receptor agonist WIN55,212-2 [(beta)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate], indicating that it was mediated by retrograde endocannabinoid release. Several peptidergic subtypes of parvocellular neuron, identified by single-cell reverse transcripton-PCR analysis, were subject to rapid inhibitory glucocorticoid regulation, including corticotropin-releasing hormone-, thyrotropin-releasing hormone-, vasopressin-, and oxytocin-expressing neurons. Therefore, our findings reveal a mechanism of rapid glucocorticoid feedback inhibition of hypothalamic hormone secretion via endocannabinoid release in the PVN and provide a link between the actions of glucocorticoids and cannabinoids in the hypothalamus that regulate stress and energy homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes.

              Brain cells are continuously exposed to corticosteroid hormones, although the levels vary (e.g., after stress). Corticosteroids alter neural activity via two receptor types, mineralocorticoid (MR) and glucocorticoid receptors (GR). These receptors regulate gene transcription but also, as we now know, act nongenomically. Via nongenomic pathways, MRs enhance and GRs suppress neural activity. In the hypothalamus, inhibitory GR effects contribute to negative feedback regulation of the stress axis. Nongenomic MR actions are also important extrahypothalamically and help organisms to immediately select an appropriate response strategy. Via genomic mechanisms, corticosteroid actions in the basolateral amygdala and ventral-most part of the cornu ammonis 1 hippocampal area are generally excitatory, providing an extended window for encoding of emotional aspects of a stressful event. GRs in hippocampal and prefrontal pyramidal cells increase surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and strengthen glutamatergic signaling through pathways partly overlapping with those involved in long-term potentiation. This raises the threshold for subsequent induction of synaptic potentiation and promotes long-term depression. Synapses activated during stress are thus presumably strengthened but protected against excitatory inputs reaching the cells later. This restores higher cognitive control and promotes, for example, consolidation of stress-related contextual information. When an organism experiences stress early in life or repeatedly in adulthood, the ability to induce synaptic potentiation is strongly reduced and the likelihood to induce depression enhanced, even under rest. Treatment with antiglucocorticoids can ameliorate cellular effects after chronic stress and thus provide an interesting lead for treatment of stress-related disorders.
                Bookmark

                Author and article information

                Journal
                Endocrinology
                The Endocrine Society
                0013-7227
                1945-7170
                July 01 2016
                July 01 2016
                May 04 2016
                : 157
                : 7
                : 2785-2798
                Affiliations
                [1 ]Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
                Article
                10.1210/en.2016-1123
                4929554
                27145013
                3984dce5-4a2a-4eea-971a-294c7ee39fbd
                © 2016
                History

                Comments

                Comment on this article