34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Integrin trafficking in cells and tissues

      , , ,
      Nature Cell Biology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Cell adhesion to the extracellular matrix (ECM) is fundamental to metazoan multicellularity and is accomplished primarily through the integrin family of cell-surface receptors. Integrins are internalised and enter the endo/exocytic pathway before being recycled back to the plasma membrane. The trafficking of this extensive protein family is regulated in multiple context-dependent ways to modulate integrin function in the cell. Here we discuss recent advances in understanding the mechanisms and cellular roles of integrin endocytic trafficking. </p>

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Every step of the way: integrins in cancer progression and metastasis

          Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Integrin ligands at a glance.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The final steps of integrin activation: the end game.

              Cell-directed changes in the ligand-binding affinity ('activation') of integrins regulate cell adhesion and migration, extracellular matrix assembly and mechanotransduction, thereby contributing to embryonic development and diseases such as atherothrombosis and cancer. Integrin activation comprises triggering events, intermediate signalling events and, finally, the interaction of integrins with cytoplasmic regulators, which changes an integrin's affinity for its ligands. The first two events involve diverse interacting signalling pathways, whereas the final steps are immediately proximal to integrins, thus enabling integrin-focused therapeutic strategies. Recent progress provides insight into the structure of integrin transmembrane domains, and reveals how the final steps of integrin activation are mediated by integrin-binding proteins such as talins and kindlins.
                Bookmark

                Author and article information

                Journal
                Nature Cell Biology
                Nat Cell Biol
                Springer Nature
                1465-7392
                1476-4679
                January 2 2019
                Article
                10.1038/s41556-018-0223-z
                6597357
                30602723
                39874c6f-a39b-4499-9c7e-f4f9975cb820
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article