57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differential Expression of Chemokine Receptors and Chemotactic Responsiveness of Type 1 T Helper Cells (Th1s) and Th2s

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T helper cells type 1 (Th1s) that produce interferon-γ predominantly mediate cellular immune responses and are involved in the development of chronic inflammatory conditions, whereas Th2s which produce large amounts of IL-4 and IL-5 upregulate IgE production and are prominent in the pathogenesis of allergic diseases. The precise factors determining whether Th1- or Th2-mediated immune responses preferentially occur at a peripheral site of antigen exposure are largely unknown. Chemokines, a superfamily of polypeptide mediators, are a key component of the leukocyte recruitment process. Here we report that among four CXC (CXCR1-4) and five CC (CCR1-5) chemokine receptors analyzed, CXCR3 and CCR5 are preferentially expressed in human Th1s. In contrast, Th2s preferentially express CCR4 and, to a lesser extent, CCR3. In agreement with the differential chemokine receptor expression, Th1s and Th2s selectively migrate in response to the corresponding chemokines. The differential expression of chemokine receptors may dictate, to a large extent, the migration and tissue homing of Th1s and Th2s. It may also determine different susceptibility of Th1s and Th2s to human immunodeficiency virus strains using different fusion coreceptors.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1)

          Chemotactic factors are postulated to direct emigration of lymphocytes from the blood stream into sites of inflammation. Members of a family of chemotactic cytokines, termed chemokines, have been shown to attract lymphocytes but efficacy, i.e., the maximal percentage of attracted cells, has been low. We have identified a highly efficacious lymphocyte chemotactic activity in the supernatants of the murine bone marrow stroma cell line MS-5 which attracts 10-fold more lymphocytes in vitro than currently described lymphocyte chemoattractants. Purification of this chemotactic activity revealed identity to stromal cell-derived factor 1 (SDF-1). SDF-1 acts on lymphocytes and monocytes but not neutrophils in vitro and is both a highly efficacious and highly potent mononuclear cell attractant in vivo. In addition, SDF-1 induces intracellular actin polymerization in lymphocytes, a process that is thought to be a prerequisite for cell motility. Since SDF-1 is expressed constitutively in a broad range of tissues it may have a role in immune surveillance and in basal extravasation of lymphocytes and monocytes rather than in inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages.

            Development of the appropriate CD4+ T helper (TH) subset during an immune response is important for disease resolution. With the use of naïve, ovalbumin-specific alpha beta T cell receptor transgenic T cell, it was found that heat-killed Listeria monocytogenes induced TH1 development in vitro through macrophage production of interleukin-12 (IL-12). Moreover, inhibition of macrophage production of IL-12 may explain the ability of IL-10 to suppress TH1 development. Murine immune responses to L. monocytogenes in vivo are of the appropriate TH1 phenotype. Therefore, this regulatory pathway may have evolved to enable innate immune cells, through interactions with microbial pathogens, to direct development of specific immunity toward the appropriate TH phenotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes

              A human receptor that is selective for the CXC chemokines IP10 and Mig was cloned and characterized. The receptor cDNA has an open reading frame of 1104-bp encoding a protein of 368 amino acids with a molecular mass of 40,659 dalton. The sequence includes seven putative transmembrane segments characteristic of G-protein coupled receptors. It shares 40.9 and 40.3% identical amino acids with the two IL-8 receptors, and 34.2-36.9% identity with the five known CC chemokine receptors. The IP10/Mig receptor is highly expressed in IL-2-activated T lymphocytes, but is not detectable in resting T lymphocytes. B lymphocytes, monocytes and granulocytes. It mediates Ca2+ mobilization and chemotaxis in response to IP10 and Mig, but does not recognize the CXC-chemokines IL-8, GRO alpha, NAP-2, GCP-2. ENA78, PF4, the CC- chemokines MCP-1, MCP-2, MCP-3, MCP-4, MIP-1 alpha, MIP-1 beta. RANTES, 1309, eotaxin, nor lymphotactin. The exclusive expression in activated T-lymphocytes is of high interest since the receptors for chemokines which have been shown so far to attract lymphocytes, e.g., MCP-1, MCP- 2, MCP-3, MIP-1 alpha, MIP-1 beta, and RANTES, are also found in monocytes and granulocytes. The present observations suggest that the IP10/Mig receptor is involved in the selective recruitment of effector T cells.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                5 January 1998
                : 187
                : 1
                : 129-134
                Affiliations
                From the [* ]Istituto di Ricerche Farmacologiche “Mario Negri”, I-20157 Milan, Italy; []Roche Milano Ricerche, I-20132 Milan, Italy; [§ ]ICOS Corporation, Bothell, Washington 98021; and []Universita' di Brescia, I-25123 Brescia, Italy
                Author notes

                Address correspondence to Francesco Sinigaglia, Roche Milano Ricerche, Via Olgettina 58, I-20132 Milano, Italy. Phone: +39-2-2884803; Fax: +39-2-2153203; E-mail: francesco.sinigaglia@ roche.com

                Article
                10.1084/jem.187.1.129
                2199181
                9419219
                39af0a9b-8d9d-49ac-85aa-3c6ff456b885
                Copyright @ 1998
                History
                : 18 September 1997
                : 3 November 1997
                Categories
                Brief Definitive Report
                Brief Definitive Reports

                Medicine
                Medicine

                Comments

                Comment on this article