7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Association between Kidney Function and Telomere Length: The Heart and Soul Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Telomere attrition is a novel risk factor for cardiovascular disease. Studies of telomere length in relation to kidney function are limited. We explored the association of kidney function with telomere length and telomere shortening. Methods: The Heart and Soul Study is a longitudinal study of patients with stable coronary heart disease. Measures of baseline kidney function included: serum creatinine, creatinine-derived estimated glomerular filtration rate (eGFR<sub>CKD-EPI</sub>), 24-hour urine measured creatinine clearance, cystatin C, cystatin C-derived estimated glomerular filtration rate (eGFRcys) and urine albumin to creatinine ratio. Telomere length was measured from peripheral blood leukocytes at baseline (n = 954) and 5 years later (n = 608). Linear regression models were used to test the association of kidney function with (i) baseline telomere length and (ii) change in telomere length over 5 years. Results: At baseline, mean eGFR<sub>CKD-EPI</sub> was 72.6 (±21.5) ml/min/1.73 m<sup>2</sup>, eGFRcys was 71.0 (±23.1) ml/min/1.73 m<sup>2</sup> and ACR was 8.6 (±12.3) mg/g. Only lower baseline eGFR<sub>CKD-EPI</sub> was associated with shorter baseline telomere length (9.1 (95% CI 1.2–16.9) fewer base pairs for every 5 ml/min/1.73 m<sup>2</sup> lower eGFR<sub>CKD-EPI</sub>). Lower baseline eGFR<sub>CKD-EPI</sub> (and all other measures of kidney function) predicted more rapid telomere shortening (10.8 (95% CI 4.3–17.3) decrease in base pairs over 5 years for every 5 ml/min/1.73 m<sup>2</sup> lower eGFR<sub>CKD-EPI</sub>). After adjustment for age, these associations were no longer statistically significant. Conclusions: In patients with coronary heart disease, reduced kidney function is associated with (i) shorter baseline telomere length and (ii) more rapid telomere shortening over 5 years; however, these associations are entirely explained by older age.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD.

          Serum cystatin C was proposed as a potential replacement for serum creatinine in glomerular filtration rate (GFR) estimation. We report the development and evaluation of GFR-estimating equations using serum cystatin C alone and serum cystatin C, serum creatinine, or both with demographic variables. Test of diagnostic accuracy. Participants screened for 3 chronic kidney disease (CKD) studies in the United States (n = 2,980) and a clinical population in Paris, France (n = 438). Measured GFR (mGFR). Estimated GFR using the 4 new equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both with age, sex, and race. New equations were developed by using linear regression with log GFR as the outcome in two thirds of data from US studies. Internal validation was performed in the remaining one third of data from US CKD studies; external validation was performed in the Paris study. GFR was measured by using urinary clearance of iodine-125-iothalamate in the US studies and chromium-51-EDTA in the Paris study. Serum cystatin C was measured by using Dade-Behring assay, standardized serum creatinine values were used. Mean mGFR, serum creatinine, and serum cystatin C values were 48 mL/min/1.73 m(2) (5th to 95th percentile, 15 to 95), 2.1 mg/dL, and 1.8 mg/L, respectively. For the new equations, coefficients for age, sex, and race were significant in the equation with serum cystatin C, but 2- to 4-fold smaller than in the equation with serum creatinine. Measures of performance in new equations were consistent across the development and internal and external validation data sets. Percentages of estimated GFR within 30% of mGFR for equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both levels with age, sex, and race were 81%, 83%, 85%, and 89%, respectively. The equation using serum cystatin C level alone yields estimates with small biases in age, sex, and race subgroups, which are improved in equations including these variables. Study population composed mainly of patients with CKD. Serum cystatin C level alone provides GFR estimates that are nearly as accurate as serum creatinine level adjusted for age, sex, and race, thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including serum cystatin C level in combination with serum creatinine level, age, sex, and race provides the most accurate estimates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study.

            Inter-individual differences in biological ageing could affect susceptibility to coronary heart disease. Our aim was to determine whether mean leucocyte telomere length is a predictor of the development of coronary heart disease. We compared telomere lengths at recruitment in 484 individuals in the West of Scotland Primary Prevention Study (WOSCOPS) who went on to develop coronary heart disease events with those from 1058 matched controls who remained event free. We also investigated whether there was any association between telomere length and observed clinical benefit of statin treatment in WOSCOPS. Mean telomere length decreased with age by 9% per decade (95% CI 3.6-14.1; p=0.001) in controls; much the same trend was seen in cases (-5.9% per decade, -3.1 to 14.1; p=0.1902). Individuals in the middle and the lowest tertiles of telomere length were more at risk of developing a coronary heart disease event than were individuals in the highest tertile (odds ratio [OR] for coronary heart disease: 1.51, 95% CI 1.15-1.98; p=0.0029 in the middle tertile; 1.44, 1.10-1.90, p=0.0090 in the lowest). In placebo-treated patients, the risk of coronary heart disease was almost double in those in the lower two tertiles of telomere length compared with those in the highest tertile (1.93, 1.33-2.80, p=0.0005 in the middle tertile; 1.94, 1.33-2.84, p=0.0006 in the lowest). By contrast, in patients treated with pravastatin, the increased risk with shorter telomeres was substantially attenuated (1.12, 0.75-1.69, p=0.5755 in the middle tertile; 1.02, 0.68-1.52, p=0.9380 in the lowest). Mean leucocyte telomere length is a predictor of future coronary heart disease events in middle-aged, high-risk men and could identify individuals who would benefit most from statin treatment. Our findings lend support to the hypothesis that differences in biological ageing might contribute to the risk--and variability in age of onset--of coronary heart disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease.

              Increased dietary intake of marine omega-3 fatty acids is associated with prolonged survival in patients with coronary heart disease. However, the mechanisms underlying this protective effect are poorly understood. To investigate the association of omega-3 fatty acid blood levels with temporal changes in telomere length, an emerging marker of biological age. Prospective cohort study of 608 ambulatory outpatients in California with stable coronary artery disease recruited from the Heart and Soul Study between September 2000 and December 2002 and followed up to January 2009 (median, 6.0 years; range, 5.0-8.1 years). We measured leukocyte telomere length at baseline and again after 5 years of follow-up. Multivariable linear and logistic regression models were used to investigate the association of baseline levels of omega-3 fatty acids (docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) with subsequent change in telomere length. Individuals in the lowest quartile of DHA+EPA experienced the fastest rate of telomere shortening (0.13 telomere-to-single-copy gene ratio [T/S] units over 5 years; 95% confidence interval [CI], 0.09-0.17), whereas those in the highest quartile experienced the slowest rate of telomere shortening (0.05 T/S units over 5 years; 95% CI, 0.02-0.08; P < .001 for linear trend across quartiles). Levels of DHA+EPA were associated with less telomere shortening before (unadjusted beta coefficient x 10(-3) = 0.06; 95% CI, 0.02-0.10) and after (adjusted beta coefficient x 10(-3) = 0.05; 95% CI, 0.01-0.08) sequential adjustment for established risk factors and potential confounders. Each 1-SD increase in DHA+EPA levels was associated with a 32% reduction in the odds of telomere shortening (adjusted odds ratio, 0.68; 95% CI, 0.47-0.98). Among this cohort of patients with coronary artery disease, there was an inverse relationship between baseline blood levels of marine omega-3 fatty acids and the rate of telomere shortening over 5 years.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2012
                November 2012
                25 October 2012
                : 36
                : 5
                : 405-411
                Affiliations
                Departments of aMedicine, bEpidemiology and Biostatistics, cPsychiatry and dBiochemistry and Biophysics, University of California, eSan Francisco Veterans Affairs Medical Center, San Francisco, Calif., fNephrology Section, Veterans Affairs San Diego Healthcare System, and gDivision of Nephrology, Department of Medicine, and hDivision of Preventative Medicine, Department of Family and Preventative Medicine, University of California, San Diego, Calif., USA
                Author notes
                *Nisha Bansal, MD, MAS, Division of Nephrology, University of California, San Francisco, 521 Parnassus Ave, Box 0532, San Francisco, CA 94143 (USA), E-Mail nisha.bansal@ucsf.edu
                Article
                343495 PMC3552638 Am J Nephrol 2012;36:405–411
                10.1159/000343495
                PMC3552638
                23108000
                39b41cce-7536-4d96-9c0c-267ebbe70290
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 24 July 2012
                : 17 September 2012
                Page count
                Tables: 4, Pages: 7
                Categories
                Original Report: Patient-Oriented, Translational Research

                Cardiovascular Medicine,Nephrology
                Kidney,Chronic kidney disease,Telomere
                Cardiovascular Medicine, Nephrology
                Kidney, Chronic kidney disease, Telomere

                Comments

                Comment on this article