6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structure based design and characterization of peptides that inhibit IgE binding to its high-affinity receptor

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have designed synthetic peptide inhibitors of the interaction between IgE and its high affinity receptor, Fc epsilon RI. The structure of the second domain of CD2 was used as a modelling template for the second alpha-chain domain of Fc epsilon RI, the C-C' loop of which has been implicated in the interaction with IgE. An L-amino acid peptide and a retro-enantiomeric D-amino acid peptide were designed to mimic the conformation of the C-C' region. Both peptides were cyclized by disulphide bond formation between terminal cysteine residues, and show mirror image symmetry by circular dichroism analysis. The C-C' peptide mimics act as competitive inhibitors of IgE binding. The cyclic L- and retro D-peptides exhibited KDs of approximately 3 microM and 11 microM, respectively, for IgE. Further, the peptides inhibit IgE-mediated mast cell degranulation, an in vitro model of an allergic response.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          SETOR: hardware-lighted three-dimensional solid model representations of macromolecules.

          SETOR is designed to exploit the hardware lighting capabilities of the IRIS-4D series graphics workstations to render high-quality raster images of macromolecules that can undergo rotation and translation interactively. SETOR can render standard all-atom and backbone models of proteins or nucleic acids, but focuses on displaying protein molecules by highlighting elements of secondary structure. The program has a very friendly user interface that minimizes the number of input files by allowing the user to interactively edit parameters, such as colors, lighting coefficients, and descriptions of secondary structure via mouse activated dialogue boxes. The choice of polymer chain representation can be varied from standard vector models and van der Waal models, to a B-spline fit of polymer backbones that yields a smooth ribbon that approximates the polymer chain, to strict Cardinal splines that interpolate the smoothest curve possible that will precisely follow the polymer chain. The program provides a photograph mode, save/restore facilities, and efficient generation of symmetry-related molecules and packing diagrams. Additionally, SETOR is designed to accept commands and model coordinates from the standard input stream, and to control standard output. Ancillary programs provide a method to interactively edit hardcopy plots of all vector and many solid models generated by SETOR, and to produce standard HPGL or PostScript files. Examples of figures rendered by SETOR of a number of macromolecules of various classes are presented.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            Turns in Peptides and Proteins

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The immunoglobulin fold. Structural classification, sequence patterns and common core.

              Since the first crystal structure of an immunoglobulin revealed a modular architecture, the characteristic beta-sheet fold of the immunoglobulin domain has been found in many other proteins of diverse biological function. Here, a systematic comparison of 23 Ig domain structures with less than 25% pairwise residue identity was performed using automatic structural alignment and analysis of beta-sheet and loop topology. Sequence consensus patterns were identified for nine distinct families with at most marginal similarity to each other. The analysis reveals a common structural core of only four beta-strands (b, c, e and f), embedded in an antiparallel curled beta-sheet sandwich with a total of three to five additional strands (a, c', c'', d, g) and a characteristic intersheet angle. The variation in the position of the edge strands (a, c', c'', d and g) relative to the common core defines four different topological subtypes that correlate with the length of the intervening sequence between strands c and e, the most variable region in sequence. The switch of strand c' from one sheet to the other in seven-stranded domains appears to result from short c-e segments, rather than being a major structural discriminator. The high degree of structural flexibility outside the common core and the extreme variability of side-chain packing inside the core do not support a protein folding pathway common to all members of the structural class. Mutation rates of immunoglobulin-like domains in different proteins vary considerably. Disulfide bridges, thought to contribute to structural stability, are not necessarily invariant in number and location within a subclass.
                Bookmark

                Author and article information

                Journal
                Nature Structural Biology
                Nat Struct Mol Biol
                Springer Science and Business Media LLC
                1072-8368
                May 1996
                May 1996
                : 3
                : 5
                : 419-426
                Article
                10.1038/nsb0596-419
                8612071
                39b8830c-e6aa-4388-a13c-5d6cc6c83cec
                © 1996
                History

                Comments

                Comment on this article