22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species’ specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it did affect the richness, number of individuals, success of some species, and seemed to shape the boundary of these forests as shown by the difference in the positioning of these species along the inundation gradient.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes.

          Fire shapes the distribution of savanna and forest through complex interactions involving climate, resources and species traits. Based on data from central Brazil, we propose that these interactions are governed by two critical thresholds. The fire-resistance threshold is reached when individual trees have accumulated sufficient bark to avoid stem death, whereas the fire-suppression threshold is reached when an ecosystem has sufficient canopy cover to suppress fire by excluding grasses. Surpassing either threshold is dependent upon long fire-free intervals, which are rare in mesic savanna. On high-resource sites, the thresholds are reached quickly, increasing the probability that savanna switches to forest, whereas low-resource sites are likely to remain as savanna even if fire is infrequent. Species traits influence both thresholds; saplings of savanna trees accumulate bark thickness more quickly than forest trees, and are more likely to become fire resistant during fire-free intervals. Forest trees accumulate leaf area more rapidly than savanna trees, thereby accelerating the transition to forest. Thus, multiple factors interact with fire to determine the distribution of savanna and forest by influencing the time needed to reach these thresholds. Future work should decipher multiple environmental controls over the rates of tree growth and canopy closure in savanna. © 2012 Blackwell Publishing Ltd/CNRS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains.

            In Amazonian floodplain forests, >1000 tree species grow in an environment subject to extended annual submergence which can last up to 9 months each year. Water depth can reach 10 m, fully submerging young and also adult trees, most of which reproduce during the flood season. Complete submergence occurs regularly at the seedling or sapling stage for many species that colonize low-lying positions in the flooding gradient. Here hypoxic conditions prevail close to the water surface in moving water, while anaerobic conditions are common in stagnant pools. Light intensities in the floodwater are very low. Despite a lack of both oxygen and light imposed by submergence for several months, most leafed seedlings survive. Furthermore, underwater growth has also been observed in several species in the field and under experimental conditions. The present article assesses how these remarkable plants react to submergence and discusses physiological mechanisms and anatomical adaptations that may explain their success.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Postfire response of flood-regenerating riparian vegetation in a semi-arid landscape.

              Piles of large wood (LW) deposited by major floods in river corridors can interact with naturally occurring wildfires from uplands to impact the regeneration of riparian vegetation. This study examines the spatial and short-term temporal response of riparian vegetation and soil nutrients to fire along the Sabie River, South Africa, with special emphasis on the effects of burned LW piles. At the study site there were 112 species of plants recorded with 28% of species restricted to the burned plots. As expected, vegetation cover was significantly lower in burned plots as compared with the unburned plots 12 months postfire. There was a significant influence of LW on species richness with fewer species recorded in the LW plots. For both fire and LW treatments, plant cover showed a significant change over three years. After an initial increase from 12 to 24 months (postfire) there was a decline in plant cover after 36 months. Species community composition was distinctly different between burned and unburned plots 12 months postfire, and the presence of LW affected species composition for burned plots but not for unburned ones. Time series ordination of LW plots highlighted the changes in species composition over the three years of sampling. Of trees with accumulations of LW within 5 m of their base, 48% had been killed by fire as compared to only 4% with no LW accumulations in close proximity. Soil-available P was significantly higher in the burned plots and even higher with burned LW while there were no effects on soil total N. There was also a significant positive trend between available P in soils and plant vegetation cover. Soil-exchangeable K was also significantly higher and total C significantly lower in the burned and LW plots. Burned plots also had significantly higher soil electrical conductivity (EC) and soil pH. The patchy nature of the studied fire, whose complexity is exacerbated by the distribution of flood deposited LW, acted to create a mosaic of alternate successional states as the riparian community recovers from flooding and the subsequent fire. We suspect that the resultant heterogeneity will increase ecosystem resilience by providing flexibility in the form of more options for a system response to subsequent disturbances.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                9 June 2016
                2016
                : 11
                : 6
                : e0156825
                Affiliations
                [1 ]Laboratório de Botânica, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
                [2 ]Biodiversity, Evolution, and Ecology of Plants (BEE) Biocenter Klein Flottbek and Botanical Garden, University of Hamburg, Hamburg, Germany
                [3 ]Laboratório de Geoprocessamento para Aplicações Ambientais, Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
                [4 ]Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
                [5 ]Laboratório de Botânica, Campus do Pantanal, Universidade Federal de Mato Grosso do Sul, Corumbá, MS, Brazil
                Wuhan Botanical Garden,CAS, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GADJ. Performed the experiments: WSA IHI. Analyzed the data: JO NLC. Contributed reagents/materials/analysis tools: GADJ AP ACPF. Wrote the paper: GADJ WSA JO AP NLC. Obtained funding: GADJ AP.

                Article
                PONE-D-15-44642
                10.1371/journal.pone.0156825
                4900580
                27280879
                39bb632e-19e0-43a2-9f9d-bd63321c1308
                © 2016 Arruda et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 October 2015
                : 22 May 2016
                Page count
                Figures: 6, Tables: 3, Pages: 18
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100002322, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior;
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100002322, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior;
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100002322, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior;
                Award ID: BEX4915/13-5
                Award Recipient :
                Funded by: Instituto Nacional de Ciência e Tecnologia em Áreas ùmidas/INAU/CNPq
                Funded by: funder-id http://dx.doi.org/10.13039/501100003593, Conselho Nacional de Desenvolvimento Científico e Tecnológico;
                Award Recipient :
                This study was supported by the Instituto Nacional de Ciência e Tecnologia em Áreas Úmidas/CNPq, http://www.inau.org.br/homepage.php. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Ecosystems
                Forests
                Ecology and Environmental Sciences
                Ecology
                Ecosystems
                Forests
                Ecology and Environmental Sciences
                Terrestrial Environments
                Forests
                Ecology and Environmental Sciences
                Wildfires
                Earth Sciences
                Hydrology
                Flooding
                Biology and Life Sciences
                Organisms
                Plants
                Trees
                Biology and Life Sciences
                Ecology
                Plant Ecology
                Plant Communities
                Grasslands
                Ecology and Environmental Sciences
                Ecology
                Plant Ecology
                Plant Communities
                Grasslands
                Biology and Life Sciences
                Plant Science
                Plant Ecology
                Plant Communities
                Grasslands
                Ecology and Environmental Sciences
                Terrestrial Environments
                Grasslands
                Earth Sciences
                Seasons
                Biology and Life Sciences
                Paleontology
                Paleoxylology
                Earth Sciences
                Paleontology
                Paleoxylology
                Earth Sciences
                Marine and Aquatic Sciences
                Bodies of Water
                Rivers
                Ecology and Environmental Sciences
                Aquatic Environments
                Freshwater Environments
                Rivers
                Earth Sciences
                Marine and Aquatic Sciences
                Aquatic Environments
                Freshwater Environments
                Rivers
                Custom metadata
                All files are available from https://osf.io/2nqc3/files/.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article