6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Experimental co-transmission of Simian Immunodeficiency Virus (SIV) and the macaque homologs of the Kaposi Sarcoma-Associated Herpesvirus (KSHV) and Epstein-Barr Virus (EBV)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macaque RFHV and LCV are close homologs of human KSHV and EBV, respectively. No experimental model of RFHV has been developed due to the lack of a source of culturable infectious virus. Screening of macaques at the Washington National Primate Research Center detected RFHV in saliva of SIV-infected macaques from previous vaccine studies. A pilot experimental infection of two naïve juvenile pig-tailed macaques was initiated by inoculation of saliva from SIV-infected pig-tailed and cynomolgus macaque donors, which contained high levels of DNA (> 10 6 genomes/ml) of the respective species-specific RFHV strain. Both juvenile recipients developed SIV and RFHV infections with RFHV DNA detected transiently in saliva and/or PBMC around week 16 post-infection. One juvenile macaque was infected with the homologous RFHVMn from whole saliva of a pig-tailed donor, which had been inoculated into the cheek pouch. This animal became immunosuppressed, developing simian AIDS and was euthanized 23 weeks after inoculation. The levels of RFHV DNA in saliva and PBMC remained below the level of detection after week 17, showing no reactivation of the RFHVMn infection during the rapid development of AIDS. The other juvenile macaque was infected with the heterologous RFHVMf from i.v. inoculation of purified virions from saliva of a cynomolgus donor. The juvenile recipient remained immunocompetent, developing high levels of persistent anti-RFHV and -SIV antibodies. After the initial presence of RFHVMf DNA in saliva and PBMC decreased to undetectable levels by week 19, all attempts to reactivate the infection through additional inoculations, experimental infection with purified SRV-2 or SIV, or immunosuppressive treatments with cyclosporine or dexamethasone were unsuccessful. An heterologous LCV transmission was also detected in this recipient, characterized by continual high levels of LCVMf DNA from the cynomolgus donor in both saliva (> 10 6 genomes/ml) and PBMC (> 10 4 genomes/million cells), coupled with high levels of anti-LCV antibodies. The macaque was sacrificed 209 weeks after the initial inoculation. Low levels of LCVMf DNA were detected in salivary glands, tonsils and other lymphoid organs, while RFHVMf DNA was below the level of detection. These results show successful co-transmission of RFHV and LCV from saliva and demonstrate differential lytic activation of the different gammaherpesvirus lineages due to presumed differences in biology and tropism and control by the host immune system. Although this initial pilot transmission study utilized only two macaques, it provides the first evidence for experimental transmission of the macaque homolog of KSHV, setting the stage for larger transmission studies to examine the differential activation of rhadinovirus and lymphocryptovirus infections and the pathological effects of immunosuppression.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas.

          Epstein-Barr virus (EBV) infects cells in latent or lytic forms, but the role of lytic infection in EBV-induced lymphomas is unclear. Here, we have used a new humanized mouse model, in which both human fetal CD34(+) hematopoietic stem cells and thymus/liver tissue are transplanted, to compare EBV pathogenesis and lymphoma formation following infection with a lytic replication-defective BZLF1-deleted (Z-KO) virus or a lytically active BZLF1(+) control. Both the control and Z-KO viruses established long-term viral latency in all infected animals. The infection appeared well controlled in some animals, but others eventually developed CD20(+) diffuse large B cell lymphomas (DLBCL). Animals infected with the control virus developed tumors more frequently than Z-KO virus-infected animals. Specific immune responses against EBV-infected B cells were generated in mice infected with either the control virus or the Z-KO virus. In both cases, forms of viral latency (type I and type IIB) were observed that are less immunogenic than the highly transforming form (type III) commonly found in tumors of immunocompromised hosts, suggesting that immune pressure contributed to the outcome of the infection. These results point to an important role for lytic EBV infection in the development of B cell lymphomas in the context of an active host immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gammaherpesviruses and lymphoproliferative disorders.

            Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV), formally designated human herpesvirus 4 (HHV-4) and 8 (HHV-8), respectively, are viruses that can cause a variety of cancers in humans. EBV is found in non-Hodgkin and Hodgkin lymphomas, as well as in lymphoproliferative disorders, which occur more commonly but not exclusively in individuals with immunodeficiency. EBV also causes nonlymphoid malignancies such as nasopharyngeal carcinoma. KSHV causes primary effusion lymphomas, multicentric Castleman's disease, and Kaposi's sarcoma. The frequency of lymphoid malignancies related to infection by one of these two herpesviruses is greatly increased in individuals with immunodeficiency, whether primary or acquired, for example, as a consequence of HIV infection and AIDS or in the case of therapeutic immunosuppression for organ transplantation. Our current understanding indicates that EBV and KSHV contribute to lymphomagenesis by affecting genomic stability and by subverting the cellular molecular signaling machinery and metabolism to avoid immune surveillance and enhance tumor cell growth and survival. Understanding the viral associations in specific lymphoproliferative disorders and the molecular mechanisms of viral oncogenesis will lead to better prevention, diagnosis, and treatment strategies for these diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages.

              Human herpesvirus 8 (HHV-8) causes Kaposi's sarcoma and pleural effusion lymphoma. In this study, we show that dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN; CD209) is a receptor for HHV-8 infection of myeloid DCs and macrophages. DC-SIGN was required for virus attachment to these cells and DC-SIGN-expressing cell lines. HHV-8 binding and infection were blocked by anti-DC-SIGN mAb and soluble DC-SIGN, and mannan, a natural ligand for DC-SIGN. Infection of DCs and macrophages with HHV-8 led to production of viral proteins, with little production of viral DNA, similar to HHV-8 infection of vascular endothelial cells. Infection of DCs resulted in down-regulation of DC-SIGN, a decrease in endocytic activity, and an inhibition of Ag stimulation of CD8+ T cells. We propose that DC-SIGN serves as a portal for immune dysfunction and oncogenesis caused by HHV-8 infection.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SupervisionRole: ValidationRole: Writing – review & editing
                Role: Data curationRole: InvestigationRole: MethodologyRole: SupervisionRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: InvestigationRole: Methodology
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Resources
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                16 November 2018
                2018
                : 13
                : 11
                : e0205632
                Affiliations
                [1 ] Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
                [2 ] Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
                [3 ] Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
                [4 ] Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
                Tulane University, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                [¤a]

                Current address: School of Veterinary Science, University of Queensland, Australia

                [¤b]

                Current address: Adaptive Biotechnologies, Seattle, Washington, United States of America

                Author information
                http://orcid.org/0000-0001-7646-0028
                Article
                PONE-D-18-26643
                10.1371/journal.pone.0205632
                6239284
                30444879
                39c01427-5615-461c-b137-8893ab1012e2
                © 2018 Bruce et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 September 2018
                : 2 November 2018
                Page count
                Figures: 7, Tables: 2, Pages: 28
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: RR023343
                Award Recipient :
                This work was supported by the National Institutes of Health, USA, under the grant RR023343 awarded to TMR. The funders had no role in study design, data collection and analysis, decisions to publish or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Primates
                Monkeys
                Old World monkeys
                Macaque
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Saliva
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Saliva
                Biology and Life Sciences
                Physiology
                Body Fluids
                Saliva
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Saliva
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                SIV
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                SIV
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Immunodeficiency Viruses
                SIV
                Biology and Life Sciences
                Organisms
                Viruses
                Immunodeficiency Viruses
                SIV
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Retroviruses
                Lentivirus
                SIV
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                SIV
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                SIV
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Retroviruses
                Lentivirus
                SIV
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Antibodies
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Antibodies
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Antibodies
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Antibodies
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Antibodies
                Biology and life sciences
                Organisms
                Viruses
                DNA viruses
                Herpesviruses
                Kaposi's Sarcoma-Associated Herpesvirus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Herpesviruses
                Kaposi's Sarcoma-Associated Herpesvirus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Herpesviruses
                Kaposi's Sarcoma-Associated Herpesvirus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Herpesviruses
                Kaposi's Sarcoma-Associated Herpesvirus
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Virions
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Biology and Life Sciences
                Genetics
                Genomics
                Animal Genomics
                Mammalian Genomics
                Custom metadata
                All relevant data are within the manuscript.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article