10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distribution and genetic characterization of fluoroquinolone resistance gene qnr among Salmonella strains from chicken in China

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The prevalence and dissemination of the plasmid-mediated fluoroquinolone (FQ) resistance gene qnr in Salmonella are considered serious public health concerns worldwide. So far, no comprehensive large-scale studies have focused on the prevalence and genetic characteristics of the qnr gene in Salmonella isolated from chickens. Herein, this study aimed to investigate the prevalence, antimicrobial resistance (AMR) patterns, and molecular characteristics of chicken-originated qnr-positive Salmonella strains from chicken farms, slaughterhouses, and markets in 12 provinces of China in 2020–2021. The overall prevalence of the qnr gene was 21.13% (56/265), with the highest prevalence in markets (36.11%, 26/72), followed in farms (17.95%, 21/117), and slaughterhouses (10.53%, 9/76). Only the qnrS and qnrB genes were detected, and the prevalence rate of the qnrS gene (19.25%, 51/265) was higher than that of the qnrB gene (1.89%, 5/265). Whole genome sequencing identified 37 distinct AMR genes and 15 plasmid replicons, and the most frequent mutation in quinolone resistance determining regions was parC (T57S; 91.49%, 43/47). Meanwhile, four different qnrS and two qnrB genetic environments were discovered among 47 qnr-positive Salmonella strains. In total, 21.28% (10/47) of the strains were capable of conjugative transfer, and all were qnrS1-positive strains, with the majority of transferable plasmids being IncHI2 types ( n = 4). Overall, the prevalence of qnr-positive Salmonella strains from chickens in China and their carriage of multiple resistance and virulence genes and transferable plasmids is a major concern, which calls for continuous surveillance of qnr-positive Salmonella and the development of measures to control its prevalence and transmission.

          IMPORTANCE

          Salmonella is a common foodborne pathogen responsible for 155,000 deaths annually worldwide. Fluoroquinolones (FQs) are used as first-line drugs for the treatment of Salmonella infections in several countries and regions. However, the emergence and increasing prevalence of the FQ-resistant gene qnr in Salmonella isolated from chickens have been widely reported. Gaining insight into the genetic mechanisms of AMR genes in chicken could lead to the development of preventive measures to control and reduce the risk of drug resistance. In this study, we identified qnr-positive Salmonellae isolated from chickens in different regions of China and their AMR patterns and genome-wide characteristics, providing a theoretical basis for further control of their prevalence and transmission.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis

          The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs.
            • Record: found
            • Abstract: found
            • Article: not found

            In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing.

            In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S. Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ResFinder 4.0 for predictions of phenotypes from genotypes

              Abstract Objectives WGS-based antimicrobial susceptibility testing (AST) is as reliable as phenotypic AST for several antimicrobial/bacterial species combinations. However, routine use of WGS-based AST is hindered by the need for bioinformatics skills and knowledge of antimicrobial resistance (AMR) determinants to operate the vast majority of tools developed to date. By leveraging on ResFinder and PointFinder, two freely accessible tools that can also assist users without bioinformatics skills, we aimed at increasing their speed and providing an easily interpretable antibiogram as output. Methods The ResFinder code was re-written to process raw reads and use Kmer-based alignment. The existing ResFinder and PointFinder databases were revised and expanded. Additional databases were developed including a genotype-to-phenotype key associating each AMR determinant with a phenotype at the antimicrobial compound level, and species-specific panels for in silico antibiograms. ResFinder 4.0 was validated using Escherichia coli (n = 584), Salmonella spp. (n = 1081), Campylobacter jejuni (n = 239), Enterococcus faecium (n = 106), Enterococcus faecalis (n = 50) and Staphylococcus aureus (n = 163) exhibiting different AST profiles, and from different human and animal sources and geographical origins. Results Genotype–phenotype concordance was ≥95% for 46/51 and 25/32 of the antimicrobial/species combinations evaluated for Gram-negative and Gram-positive bacteria, respectively. When genotype–phenotype concordance was <95%, discrepancies were mainly linked to criteria for interpretation of phenotypic tests and suboptimal sequence quality, and not to ResFinder 4.0 performance. Conclusions WGS-based AST using ResFinder 4.0 provides in silico antibiograms as reliable as those obtained by phenotypic AST at least for the bacterial species/antimicrobial agents of major public health relevance considered.

                Author and article information

                Contributors
                Role: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review and editing
                Role: SoftwareRole: Validation
                Role: SoftwareRole: Validation
                Role: Software
                Role: Software
                Role: Software
                Role: Software
                Role: Software
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: SupervisionRole: Writing – review and editing
                Role: Editor
                Journal
                Microbiol Spectr
                Microbiol Spectr
                spectrum
                Microbiology Spectrum
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2165-0497
                April 2024
                27 February 2024
                27 February 2024
                : 12
                : 4
                : e03000-23
                Affiliations
                [1 ]National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University; , Wuhan, Hubei, China
                [2 ]MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; , Wuhan, Hubei, China
                [3 ]College of Veterinary Medicine, Huazhong Agricultural University; , Wuhan, Hubei, China
                Agriculture and Agri-Food Canada; , Canada
                Author notes
                Address correspondence to Guyue Cheng, chengguyue@ 123456mail.hzau.edu.cn

                The authors declare no conflict of interest.

                Author information
                https://orcid.org/0000-0002-0974-3877
                Article
                03000-23 spectrum.03000-23
                10.1128/spectrum.03000-23
                10986518
                38411972
                39c88dba-9a20-4997-a0bd-bcf79a57d823
                Copyright © 2024 Chen et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 02 August 2023
                : 06 November 2023
                Page count
                supplementary-material: 1, authors: 10, Figures: 7, Tables: 3, References: 76, Pages: 17, Words: 9183
                Funding
                Funded by: MOST | National Key Research and Development Program of China (NKPs);
                Award ID: 2022YFD1800402
                Award Recipient :
                Funded by: MOST | National Natural Science Foundation of China (NSFC);
                Award ID: 32072921
                Award Recipient :
                Categories
                Research Article
                open-peer-review, Open Peer Review
                food-microbiology, Food Microbiology
                Custom metadata
                April 2024

                qnr genes,salmonella,chicken production chain,genetic characteristics

                Comments

                Comment on this article

                Related Documents Log