7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biocompatible coupling of therapeutic fusion proteins to human erythrocytes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d4638651e208"> <div class="list"> <a class="named-anchor" id="d4638651e210"> <!-- named anchor --> </a> <ul class="so-custom-list"> <li id="d4638651e211"> <div class="so-custom-list-content so-ol"> <p class="first" id="d4638651e212">Thrombomodulin was fused to scFvs targeting RhCE (Rh17 epitope) and band 3/GPA (Wr <sup>b</sup> epitope). </p> </div> </li> <li id="d4638651e217"> <div class="so-custom-list-content so-ol"> <p class="first" id="d4638651e218">Fusion proteins were efficacious in a humanized microfluidic model of inflammatory thrombosis. </p> </div> </li> </ul> </div> </p><p class="first" id="d4638651e222">Carriage of drugs by red blood cells (RBCs) modulates pharmacokinetics, pharmacodynamics, and immunogenicity. However, optimal targets for attaching therapeutics to human RBCs and adverse effects have not been studied. We engineered nonhuman-primate single-chain antibody fragments (scFvs) directed to human RBCs and fused scFvs with human thrombomodulin (hTM) as a representative biotherapeutic cargo (hTM-scFv). Binding fusions to RBCs on band 3/glycophorin A (GPA; Wright b [Wr <sup>b</sup>] epitope) and RhCE (Rh17/Hr0 epitope) similarly endowed RBCs with hTM activity, but differed in their effects on RBC physiology. scFv and hTM-scFv targeted to band 3/GPA increased membrane rigidity and sensitized RBCs to hemolysis induced by mechanical stress, while reducing sensitivity to hypo-osmotic hemolysis. Similar properties were seen for other ligands bound to GPA and band 3 on human and murine RBCs. In contrast, binding of scFv or hTM-scFv to RhCE did not alter deformability or sensitivity to mechanical and osmotic stress at similar copy numbers bound per RBCs. Contrasting responses were also seen for immunoglobulin G antibodies against band 3, GPA, and RhCE. RBC-bound hTM-scFv generated activated protein C (APC) in the presence of thrombin, but RhCE-targeted hTM-scFv demonstrated greater APC generation per bound copy. Both Wr <sup>b</sup>- and RhCE-targeted fusion proteins inhibited fibrin deposition induced by tumor necrosis factor-α in an endothelialized microfluidic model using human whole blood. RhCE-bound hTM-scFv more effectively reduced platelet and leukocyte adhesion, whereas anti-Wr <sup>b</sup> scFv appeared to promote platelet adhesion. These data provide a translational framework for the development of engineered affinity ligands to safely couple therapeutics to human RBCs. </p><p id="d4638651e237"> <div class="fig panel" id="absf1"> <a class="named-anchor" id="absf1"> <!-- named anchor --> </a> <div class="figure-container so-text-align-c"> <img alt="" class="figure" src="/document_file/2f863c58-c3ef-44f1-a0ff-e008fb704769/PubMedCentral/image/advances011734absf1"/> </div> <div class="panel-content"/> </div> </p>

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Enzyme loading of erythrocytes.

          We demonstrated that beta-glucosidase and beta-galactosidase can be trapped inside erythrocytes by rapid hemolysis of the cell in the presence of these enzymes. Enzyme enters only during hemolysis, and optimum uptake occurs within 60 sec. There is no loss in cell number after hemolysis-induced enzyme uptake, and the ghosts have only a slightly increased mean cell volume. Smaller proteins enter more readily than larger proteins, although enzymes with a molecular weight of at least 180,000 can be readily entrapped by erythrocytes. This finding may provide a useful approach to the problem of enzyme replacement in certain diseases, including Gaucher's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage.

            The antigen specificity of a rat monoclonal antibody TER-119 was investigated. In adult mice, TER-119 reacted with mature erythrocytes, 20-25% of bone marrow cells and 2-3% of spleen cells but not with thymocytes nor lymph node cells. In fetal haematopoietic tissues, 30-40% of d 10 yolk sac cells, 80-90% of d 14 fetal liver cells and 40-50% of newborn liver cells were reactive with TER-119. TER-119+ cells in adult bone marrow expressed significant levels of CD45 but not myeloid (Mac-1, Gr-1) or B-cell (B220) markers. Morphological examination and haematopoietic colony-forming assays for isolated TER-119+ cells revealed that TER-119 reacts with erythroid cells at differentiation stages from early proerythroblast to mature erythrocyte, but not with cells showing typical erythroid blast-forming unit (BFU-E) and erythroid colony-forming unit (CFU-E) activities. Erythroleukaemia cell lines do not express the TER-119 antigen even after stimulation with dimethylsulphoxide. TER-119 immunoprecipitated protein bands with molecular masses of 110 kDa, 60 kDa, 52 kDa and 32 kDa from erythrocyte membrane, whereas only a 52-kDa band was detected by TER-119 in Western blot analysis. Further molecular and cellular analyses indicated that the TER-119 antigen is a molecule associated with cell-surface glycophorin A but not with glycophorin A itself.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineering antigens for in situ erythrocyte binding induces T-cell deletion.

              Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.
                Bookmark

                Author and article information

                Journal
                Blood Advances
                Blood Adv
                American Society of Hematology
                2473-9529
                2473-9537
                January 24 2018
                February 13 2018
                January 24 2018
                February 13 2018
                : 2
                : 3
                : 165-176
                Article
                10.1182/bloodadvances.2017011734
                5812327
                29365311
                39cd6877-7a87-4ecc-9391-b7cba3ba7ed9
                © 2018
                History

                Comments

                Comment on this article