Blog
About

95
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A relativistic jetted outburst from a massive black hole fed by a tidally disrupted star

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, the vast majority of MBHs are considered dormant. Occasionally, a star passing too near a MBH is torn apart by gravitational forces, leading to a bright panchromatic tidal disruption flare (TDF). While the high-energy transient Swift J164449.3+573451 ("Sw 1644+57") initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that the observations (Levan et al. 2011) suggest a sudden accretion event onto a central MBH of mass ~10^6-10^7 solar masses. We find evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 with a smaller-scale blazar. The phenomenologically novel Sw 1644+57 thus connects the study of TDFs and active galaxies, opening a new vista on disk-jet interactions in BHs and magnetic field generation and transport in accretion systems.

          Related collections

          Author and article information

          Journal
          16 April 2011
          10.1126/science.1207150
          21680812
          1104.3257

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          Submitted, 32 pages including supplemental online material
          astro-ph.HE astro-ph.CO

          Comments

          Comment on this article