34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis in susceptible humans . Here, we infected Diversity Outbred (DO) mice with ∼100 bacilli by aerosol to model responses in a highly heterogeneous population. Following infection, ‘supersusceptible’, ‘susceptible’ and ‘resistant’ phenotypes emerged. TB disease (reduced survival, weight loss, high bacterial load) correlated strongly with neutrophils, neutrophil chemokines, tumor necrosis factor (TNF) and cell death. By contrast, immune cytokines were weak correlates of disease. We next applied statistical and machine learning approaches to our dataset of cytokines and chemokines from lungs and blood. Six molecules from the lung: TNF, CXCL1, CXCL2, CXCL5, interferon-γ (IFN-γ), interleukin 12 (IL-12); and two molecules from blood – IL-2 and TNF – were identified as being important by applying both statistical and machine learning methods. Using molecular features to generate tree classifiers, CXCL1, CXCL2 and CXCL5 distinguished four classes (supersusceptible, susceptible, resistant and non-infected) from each other with approximately 77% accuracy using completely independent experimental data. By contrast, models based on other molecules were less accurate. Low to no IFN-γ, IL-12, IL-2 and IL-10 successfully discriminated non-infected mice from infected mice but failed to discriminate disease status amongst supersusceptible, susceptible and resistant M.-tuberculosis-infected DO mice. Additional analyses identified CXCL1 as a promising peripheral biomarker of disease and of CXCL1 production in the lungs. From these results, we conclude that: (1) DO mice respond variably to M. tuberculosis infection and will be useful to identify pathways involving necrosis and neutrophils; (2) data from DO mice is suited for machine learning methods to build, validate and test models with independent data based solely on molecular biomarkers; (3) low levels of immunological cytokines best indicate a lack of exposure to M. tuberculosis but cannot distinguish infection from disease.

          Abstract

          Summary: Molecular biomarkers of tuberculosis are identified and used to classify disease status of Diversity Outbred mice that have been infected with Mycobacterium tuberculosis.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          High-resolution genetic mapping using the Mouse Diversity outbred population.

          The JAX Diversity Outbred population is a new mouse resource derived from partially inbred Collaborative Cross strains and maintained by randomized outcrossing. As such, it segregates the same allelic variants as the Collaborative Cross but embeds these in a distinct population architecture in which each animal has a high degree of heterozygosity and carries a unique combination of alleles. Phenotypic diversity is striking and often divergent from phenotypes seen in the founder strains of the Collaborative Cross. Allele frequencies and recombination density in early generations of Diversity Outbred mice are consistent with expectations based on simulations of the mating design. We describe analytical methods for genetic mapping using this resource and demonstrate the power and high mapping resolution achieved with this population by mapping a serum cholesterol trait to a 2-Mb region on chromosome 3 containing only 11 genes. Analysis of the estimated allele effects in conjunction with complete genome sequence data of the founder strains reduced the pool of candidate polymorphisms to seven SNPs, five of which are located in an intergenic region upstream of the Foxo1 gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic dissection of immunity to mycobacteria: the human model.

            Humans are exposed to a variety of environmental mycobacteria (EM), and most children are inoculated with live Bacille Calmette-Guérin (BCG) vaccine. In addition, most of the world's population is occasionally exposed to human-borne mycobacterial species, which are less abundant but more virulent. Although rarely pathogenic, mildly virulent mycobacteria, including BCG and most EM, may cause a variety of clinical diseases. Mycobacterium tuberculosis, M. leprae, and EM M. ulcerans are more virulent, causing tuberculosis, leprosy, and Buruli ulcer, respectively. Remarkably, only a minority of individuals develop clinical disease, even if infected with virulent mycobacteria. The interindividual variability of clinical outcome is thought to result in part from variability in the human genes that control host defense. In this well-defined microbiological and clinical context, the principles of mouse immunology and the methods of human genetics can be combined to facilitate the genetic dissection of immunity to mycobacteria. The natural infections are unique to the human model, not being found in any of the animal models of experimental infection. We review current genetic knowledge concerning the simple and complex inheritance of predisposition to mycobacterial diseases in humans. Rare patients with Mendelian disorders have been found to be vulnerable to BCG, a few EM, and M. tuberculosis. Most cases of presumed Mendelian susceptibility to these and other mycobacterial species remain unexplained. In the general population leprosy and tuberculosis have been shown to be associated with certain human genetic polymorphisms and linked to certain chromosomal regions. The causal vulnerability genes themselves have yet to be identified and their pathogenic alleles immunologically validated. The studies carried out to date have been fruitful, initiating the genetic dissection of protective immunity against a variety of mycobacterial species in natural conditions of infection. The human model has potential uses beyond the study of mycobacterial infections and may well become a model of choice for the investigation of immunity to infectious agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB.

              The exact role of neutrophils in the pathogenesis of TB is poorly understood. Recent evidence suggests that neutrophils are not simply scavenging phagocytes in Mycobacterium tuberculosis (Mtb) infection. Three different types of clinical specimens from patients with active pulmonary TB who underwent lung surgery were examined: sputum, BAL fluid, and cavity contents. Differential cell separation and quantification were performed for intracellular and extracellular bacteria, and bacterial length was measured using microscopy. Neutrophils were more abundant than macrophages in sputum (86.6% +/- 2.2% vs 8.4% +/- 1.3%) and in BAL fluid (78.8% +/- 5.8% vs 11.8% +/- 4.1%). Inside the cavity, lymphocytes (41.3% +/- 11.2%) were the most abundant cell type, followed by neutrophils (38.8% +/- 9.4%) and macrophages (19.5% +/- 7.5%). More intracellular bacilli were found in neutrophils than macrophages in sputum (67.6% +/- 5.6% vs 25.2% +/- 6.5%), in BAL fluid (65.1% +/- 14.4% vs 28.3% +/- 11.6%), and in cavities (61.8% +/- 13.3% vs 23.9% +/- 9.3%). The lengths of Mtb were shortest in cavities (1.9+/- 0.1 microm), followed by in sputum (2.9 +/- 0.1 microm) and in BAL fluid (3.6 +/- 0.2 microm). Our results show that neutrophils are the predominant cell types infected with Mtb in patients with TB and that these intracellular bacteria appear to replicate rapidly. These results are consistent with a role for neutrophils in providing a permissive site for a final burst of active replication of the bacilli prior to transmission.
                Bookmark

                Author and article information

                Journal
                Dis Model Mech
                DMM
                dmm
                Disease Models & Mechanisms
                The Company of Biologists
                1754-8403
                1754-8411
                1 September 2015
                1 September 2015
                : 8
                : 9
                : 1141-1153
                Affiliations
                [1 ]Department of Biomedical Informatics, The Ohio State University , Columbus, 43210 OH, USA
                [2 ]Department of Computer Science and Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute , Troy, 12810 NY, USA
                [3 ]Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University , Grafton, 01536 MA, USA
                [4 ]The Jackson Laboratory , Bar Harbor, 04662 ME, USA
                [5 ]Department of Medicine, Boston University School of Medicine , Boston, 02215 MA, USA
                Author notes
                [* ]Author for correspondence ( gillian.beamer@ 123456tufts.edu )
                Article
                DMM020867
                10.1242/dmm.020867
                4582107
                26204894
                39e08275-2868-4e1f-9a62-d3ed85178b78
                © 2015. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 23 March 2015
                : 16 July 2015
                Categories
                Research Article
                Custom metadata
                TIB

                Molecular medicine
                tuberculosis,mycobacterium tuberculosis,neutrophils,necrosis,cxcl1,cxcl2,cxcl5,machine learning,diversity outbred,do

                Comments

                Comment on this article