54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterium ulcerans (MU), an emerging human pathogen harbored by aquatic insects, is the causative agent of Buruli ulcer, a devastating skin disease rife throughout Central and West Africa. Mycolactone, an unusual macrolide with cytotoxic and immunosuppressive properties, is responsible for the massive s.c. tissue destruction seen in Buruli ulcer. Here, we show that MU contains a 174-kb plasmid, pMUM001, bearing a cluster of genes encoding giant polyketide synthases (PKSs), and polyketide-modifying enzymes, and demonstrate that these are necessary and sufficient for mycolactone synthesis. This is a previously uncharacterized example of plasmid-mediated virulence in a Mycobacterium, and the emergence of MU as a pathogen most likely reflects the acquisition of pMUM001 by horizontal transfer. The 12-membered core of mycolactone is produced by two giant, modular PKSs, MLSA1 (1.8 MDa) and MLSA2 (0.26 MDa), whereas its side chain is synthesized by MLSB (1.2 MDa), a third modular PKS highly related to MLSA1. There is an extreme level of sequence identity within the different domains of the MLS cluster (>97% amino acid identity), so much so that the 16 ketosynthase domains seem functionally identical. This is a finding of significant consequence for our understanding of polyketide biochemistry. Such detailed knowledge of mycolactone will further the investigation of its mode of action and the development of urgently needed therapeutic strategies to combat Buruli ulcer.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling.

          The search for new TB drugs that rapidly and effectively sterilize the tissues and are thus able to shorten the duration of chemotherapy from the current 6 months has been hampered by a lack of understanding of the metabolism of the bacterium when in a 'persistent' or latent form. Little is known about the condition in which the bacilli survive, although laboratory models have shown that Mycobacterium tuberculosis can exist in a non-growing, drug-resistant state that may mimic persistence in vivo. Using nutrient starvation, we have established a model in which M. tuberculosis arrests growth, decreases its respiration rate and is resistant to isoniazid, rifampicin and metronidazole. We have used microarray and proteome analysis to investigate the response of M. tuberculosis to nutrient starvation. Proteome analysis of 6-week-starved cultures revealed the induction of several proteins. Microarray analysis enabled us to monitor gene expression during adaptation to nutrient starvation and confirmed the changes seen at the protein level. This has provided evidence for slowdown of the transcription apparatus, energy metabolism, lipid biosynthesis and cell division in addition to induction of the stringent response and several other genes that may play a role in maintaining long-term survival within the host. Thus, we have generated a model with which we can search for agents active against persistent M. tuberculosis and revealed a number of potential targets expressed under these conditions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Polyketide biosynthesis: a millennium review.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence.

              Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe human skin disease that occurs primarily in Africa and Australia. Infection with M. ulcerans results in persistent severe necrosis without an acute inflammatory response. The presence of histopathological changes distant from the site of infection suggested that pathogenesis might be toxin mediated. A polyketide-derived macrolide designated mycolactone was isolated that causes cytopathicity and cell cycle arrest in cultured L929 murine fibroblasts. Intradermal inoculation of purified toxin into guinea pigs produced a lesion similar to that of Buruli ulcer in humans. This toxin may represent one of a family of virulence factors associated with pathology in mycobacterial diseases such as leprosy and tuberculosis.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 03 2004
                February 03 2004
                January 21 2004
                February 03 2004
                : 101
                : 5
                : 1345-1349
                Article
                10.1073/pnas.0305877101
                337055
                14736915
                39e2a384-9ca1-4606-b704-2c46348a9397
                © 2004
                History

                Comments

                Comment on this article