27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeted insertion of transgenes at pre-determined plant genomic safe harbors provides a desirable alternative to insertions at random sites achieved through conventional methods. Most existing cases of targeted gene insertion in plants have either relied on the presence of a selectable marker gene in the insertion cassette or occurred at low frequency with relatively small DNA fragments (<1.8 kb). Here, we report the use of an optimized CRISPR-Cas9-based method to achieve the targeted insertion of a 5.2 kb carotenoid biosynthesis cassette at two genomic safe harbors in rice. We obtain marker-free rice plants with high carotenoid content in the seeds and no detectable penalty in morphology or yield. Whole-genome sequencing reveals the absence of off-target mutations by Cas9 in the engineered plants. These results demonstrate targeted gene insertion of marker-free DNA in rice using CRISPR-Cas9 genome editing, and offer a promising strategy for genetic improvement of rice and other crops.

          Abstract

          Existing examples of targeted gene insertion in plants either rely on a selectable marker gene or result in short DNA inserts. Here, the authors use an optimized CRISPR-Cas9 method to insert a 5.2 kb carotenoid biosynthesis cassette into genomic safe harbors in rice, and obtain marker-free lines with high carotenoid content.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Sequence Alignment/Map format and SAMtools

          Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fast and accurate short read alignment with Burrows–Wheeler transform

            Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis.

              The transient gene expression system using Arabidopsis mesophyll protoplasts has proven an important and versatile tool for conducting cell-based experiments using molecular, cellular, biochemical, genetic, genomic and proteomic approaches to analyze the functions of diverse signaling pathways and cellular machineries. A well-established protocol that has been extensively tested and applied in numerous experiments is presented here. The method includes protoplast isolation, PEG-calcium transfection of plasmid DNA and protoplast culture. Physiological responses and high-throughput capability enable facile and cost-effective explorations as well as hypothesis-driven tests. The protoplast isolation and DNA transfection procedures take 6-8 h, and the results can be obtained in 2-24 h. The cell system offers reliable guidelines for further comprehensive analysis of complex regulatory mechanisms in whole-plant physiology, immunity, growth and development.
                Bookmark

                Author and article information

                Contributors
                pcronald@ucdavis.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                4 March 2020
                4 March 2020
                2020
                : 11
                : 1178
                Affiliations
                [1 ]ISNI 0000 0004 1936 9684, GRID grid.27860.3b, Department of Plant Pathology and the Genome Center, , University of California, ; Davis, CA 95616 USA
                [2 ]Innovative Genomics Institute, Berkeley, CA 94704 USA
                [3 ]ISNI 0000 0004 0407 8980, GRID grid.451372.6, Feedstocks Division, , The Joint Bioenergy Institute, ; Emeryville, CA 94608 USA
                [4 ]ISNI 0000 0004 1936 9684, GRID grid.27860.3b, Department of Plant Sciences, , University of California, ; Davis, CA 95616 USA
                [5 ]ISNI 0000 0004 0449 479X, GRID grid.451309.a, Department of Energy Joint Genome Institute, ; Berkeley, CA 94720 USA
                Author information
                http://orcid.org/0000-0003-4692-8659
                http://orcid.org/0000-0001-6819-847X
                http://orcid.org/0000-0001-9511-6441
                http://orcid.org/0000-0001-8062-9172
                http://orcid.org/0000-0001-6461-6072
                http://orcid.org/0000-0002-4107-1345
                Article
                14981
                10.1038/s41467-020-14981-y
                7055238
                31911652
                39f69921-cfee-4429-ba6e-1d7dd3e5775d
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 January 2019
                : 10 February 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                metabolic engineering,molecular engineering in plants,plant breeding,plant molecular biology

                Comments

                Comment on this article