18
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Using FlyAtlas to identify better Drosophila melanogaster models of human disease.

            FlyAtlas, a new online resource, provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mucins in cancer: protection and control of the cell surface.

                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                25 April 2016
                July 2016
                : 6
                : 7
                : 1841-1851
                Affiliations
                [* ]Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Portugal
                []Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Portugal
                []Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, NG7 2RD United Kingdom
                Author notes
                [1 ]Corresponding author: Instituto de Biologia Celular e Molecular, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. E-mail: jbvieira@ 123456ibmc.up.pt
                Article
                GGG_029934
                10.1534/g3.116.029934
                4938639
                27172221
                3a0720b5-12d6-49fa-93bd-750495a79aa0
                Copyright © 2016 Reis et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 December 2015
                : 18 April 2016
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 31, Pages: 11
                Categories
                Investigations

                Genetics
                drosophila melanogaster,starvation tolerance,cold resistance,mucin,muc68e
                Genetics
                drosophila melanogaster, starvation tolerance, cold resistance, mucin, muc68e

                Comments

                Comment on this article