+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments.

          Author Summary

          Dengue virus (DENV) is the most common arthropod-borne infection worldwide with 50–100 million cases annually. Despite its high clinical impact, little is known about the infectious cell entry pathway of the virus. Previous studies have shown conflicting evidence about whether the virus fuses directly with the cell plasma membrane or enters cells by receptor-mediated endocytosis. In this manuscript, we dissect the cell entry pathway of DENV by tracking single fluorescently labeled DENV particles in living cells expressing various fluorescent cellular markers, using real-time multi-color fluorescence microscopy. We show that DENV particles are delivered to pre-existing clathrin-coated pits by diffusion along the cell surface. Following clathrin-mediated uptake, the majority of DENV particles are transported to early endosomes, which mature into late endosomes, where membrane fusion occurs. This is the first study that describes the cell entry process of DENV at the single particle level and therefore provides unique mechanistic and kinetic insights into the route of entry, endocytic trafficking behavior, and membrane fusion properties of individual DENV particles in living cells. This paper opens new avenues in flavivirus biology and will lead toward a better understanding of the critical determinants in DENV infection.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          Regulated portals of entry into the cell.

          The plasma membrane is the interface between cells and their harsh environment. Uptake of nutrients and all communication among cells and between cells and their environment occurs through this interface. 'Endocytosis' encompasses several diverse mechanisms by which cells internalize macromolecules and particles into transport vesicles derived from the plasma membrane. It controls entry into the cell and has a crucial role in development, the immune response, neurotransmission, intercellular communication, signal transduction, and cellular and organismal homeostasis. As the complexity of molecular interactions governing endocytosis are revealed, it has become increasingly clear that it is tightly coordinated and coupled with overall cell physiology and thus, must be viewed in a broader context than simple vesicular trafficking.
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of the dengue virus envelope protein after membrane fusion.

            Dengue virus enters a host cell when the viral envelope glycoprotein, E, binds to a receptor and responds by conformational rearrangement to the reduced pH of an endosome. The conformational change induces fusion of viral and host-cell membranes. A three-dimensional structure of the soluble E ectodomain (sE) in its trimeric, postfusion state reveals striking differences from the dimeric, prefusion form. The elongated trimer bears three 'fusion loops' at one end, to insert into the host-cell membrane. Their structure allows us to model directly how these fusion loops interact with a lipid bilayer. The protein folds back on itself, directing its carboxy terminus towards the fusion loops. We propose a fusion mechanism driven by essentially irreversible conformational changes in E and facilitated by fusion-loop insertion into the outer bilayer leaflet. Specific features of the folded-back structure suggest strategies for inhibiting flavivirus entry.
              • Record: found
              • Abstract: found
              • Article: not found

              Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation

               RG Anderson,  LH Wang (1993)
              The clathrin-coated pit lattice is held onto the plasma membrane by an integral membrane protein that binds the clathrin AP-2 subunit with high affinity. In vitro studies have suggested that this protein controls the assembly of the pit because membrane bound AP-2 is required for lattice assembly. If so, the AP-2 binding site must be a resident protein of the coated pit and recycle with other receptors that enter cells through this pathway. Proper recycling, however, would require the switching off of AP-2 binding to allow the binding site to travel through the endocytic pathway unencumbered. Evidence for this hypothesis has been revealed by the cationic amphiphilic class of drugs (CAD), which have previously been found to inhibit receptor recycling. Incubation of human fibroblasts in the presence of these drugs caused clathrin lattices to assemble on endosomal membranes and at the same time prevented coated pit assembly at the cell surface. These effects suggest that CADs reverse an on/off switch that controls AP-2 binding to membranes. We conclude that cells have a mechanism for switching on and off AP-2 binding during the endocytic cycle.

                Author and article information

                Role: Editor
                PLoS Pathog
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                December 2008
                December 2008
                19 December 2008
                : 4
                : 12
                [1 ]Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
                [2 ]Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts, United States of America
                [3 ]Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
                [4 ]Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
                [5 ]Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
                Harvard Medical School, United States of America
                Author notes

                ¶ These authors are joint senior authors on this work.

                Conceived and designed the experiments: HMvdS MJR CC JW XZ JMS. Performed the experiments: HMvdS MJR CC HvdEM. Analyzed the data: HMvdS MJR CC HvdEM JW XZ JMS. Contributed reagents/materials/analysis tools: JW XZ JMS. Wrote the paper: HMvdS MJR JW XZ JMS.

                van der Schaar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 9
                Research Article
                Virology/Host Invasion and Cell Entry

                Infectious disease & Microbiology


                Comment on this article