7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Does the motor system contribute to the perception and understanding of actions? Reflections on Gregory Hickok’s The myth of mirror neurons: the real neuroscience of communication and cognition

      Language and Cognition
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          abstract

          It has been said that mirror neurons are “the most hyped concept in neuroscience” (Jarrett, 2012). In his book The myth of mirror neurons: the real neuroscience of communication and cognition(2014), Gregory Hickok does the field a great service by cutting through this hype and showing that, contrary to the views of many laypeople as well as some experts, mirror neurons are not the fundamental ‘basis’ of action understanding. I argue here, however, that he takes his critique too far by effectively denying that the motor system plays any significant role at all in the perception and interpretation of actions. In fact, a large literature strongly supports the hypothesis that motor regions in the frontal and parietal lobes not only subserve the execution of actions, but also contribute to the comprehension of actions, regardless of whether they are directly observed or linguistically represented. In addition, recent research suggests that although the articulatory system is involved primarily in speech production, it enhances speech perception too, even when the auditory stimuli are not explicitly attended.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: not found
          • Article: not found

          Rare and common variants: twenty arguments.

          Genome-wide association studies have greatly improved our understanding of the genetic basis of disease risk. The fact that they tend not to identify more than a fraction of the specific causal loci has led to divergence of opinion over whether most of the variance is hidden as numerous rare variants of large effect or as common variants of very small effect. Here I review 20 arguments for and against each of these models of the genetic basis of complex traits and conclude that both classes of effect can be readily reconciled.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ALE meta-analysis of action observation and imitation in the human brain.

            Over the last decade, many neuroimaging studies have assessed the human brain networks underlying action observation and imitation using a variety of tasks and paradigms. Nevertheless, questions concerning which areas consistently contribute to these networks irrespective of the particular experimental design and how such processing may be lateralized remain unresolved. The current study aimed at identifying cortical areas consistently involved in action observation and imitation by combining activation likelihood estimation (ALE) meta-analysis with probabilistic cytoarchitectonic maps. Meta-analysis of 139 functional magnetic resonance and positron emission tomography experiments revealed a bilateral network for both action observation and imitation. Additional subanalyses for different effectors within each network revealed highly comparable activation patterns to the overall analyses on observation and imitation, respectively, indicating an independence of these findings from potential confounds. Conjunction analysis of action observation and imitation meta-analyses revealed a bilateral network within frontal premotor, parietal, and temporo-occipital cortex. The most consistently rostral inferior parietal area was PFt, providing evidence for a possible homology of this region to macaque area PF. The observation and imitation networks differed particularly with respect to the involvement of Broca's area: whereas both networks involved a caudo-dorsal part of BA 44, activation during observation was most consistent in a more rostro-dorsal location, i.e., dorsal BA 45, while activation during imitation was most consistent in a more ventro-caudal aspect, i.e., caudal BA 44. The present meta-analysis thus summarizes and amends previous descriptions of the human brain networks related to action observation and imitation. Copyright 2009 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predictive coding: an account of the mirror neuron system.

              Is it possible to understand the intentions of other people by simply observing their actions? Many believe that this ability is made possible by the brain's mirror neuron system through its direct link between action and observation. However, precisely how intentions can be inferred through action observation has provoked much debate. Here we suggest that the function of the mirror system can be understood within a predictive coding framework that appeals to the statistical approach known as empirical Bayes. Within this scheme the most likely cause of an observed action can be inferred by minimizing the prediction error at all levels of the cortical hierarchy that are engaged during action observation. This account identifies a precise role for the mirror system in our ability to infer intentions from actions and provides the outline of the underlying computational mechanisms.
                Bookmark

                Author and article information

                Journal
                applab
                Language and Cognition
                Lang. cogn.
                Cambridge University Press (CUP)
                1866-9808
                1866-9859
                September 2015
                December 2 2014
                September 2015
                : 7
                : 03
                : 450-475
                Article
                10.1017/langcog.2014.36
                3a33d260-a111-4f56-8de7-2b86715e8e7e
                © 2015
                History

                Comments

                Comment on this article