+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parasitic infections in HIV infected individuals: Diagnostic & therapeutic challenges

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          After 30 years of the human immunodeficiency virus (HIV) epidemic, parasites have been one of the most common opportunistic infections (OIs) and one of the most frequent causes of morbidity and mortality associated with HIV-infected patients. Due to severe immunosuppression, enteric parasitic pathogens in general are emerging and are OIs capable of causing diarrhoeal disease associated with HIV. Of these, Cryptosporidium parvum and Isospora belli are the two most common intestinal protozoan parasites and pose a public health problem in acquired immunodeficiency syndrome (AIDS) patients. These are the only two enteric protozoan parasites that remain in the case definition of AIDS till today. Leismaniasis, strongyloidiasis and toxoplasmosis are the three main opportunistic causes of systemic involvements reported in HIV-infected patients. Of these, toxoplasmosis is the most important parasitic infection associated with the central nervous system. Due to its complexity in nature, toxoplasmosis is the only parasitic disease capable of not only causing focal but also disseminated forms and it has been included in AIDS-defining illnesses (ADI) ever since. With the introduction of highly active anti-retroviral therapy (HAART), cryptosporidiosis, leishmaniasis, schistosomiasis, strongyloidiasis, and toxoplasmosis are among parasitic diseases reported in association with immune reconstitution inflammatory syndrome (IRIS). This review addresses various aspects of parasitic infections in term of clinical, diagnostic and therapeutic challenges associated with HIV-infection.

          Related collections

          Most cited references 179

          • Record: found
          • Abstract: found
          • Article: not found

          Cutaneous leishmaniasis.

          Cutaneous leishmaniasis is endemic in the tropics and neotropics. It is often referred to as a group of diseases because of the varied spectrum of clinical manifestations, which range from small cutaneous nodules to gross mucosal tissue destruction. Cutaneous leishmaniasis can be caused by several Leishmania spp and is transmitted to human beings and animals by sandflies. Despite its increasing worldwide incidence, but because it is rarely fatal, cutaneous leishmaniasis has become one of the so-called neglected diseases, with little interest by financial donors, public-health authorities, and professionals to implement activities to research, prevent, or control the disease. In endemic countries, diagnosis is often made clinically and, if possible, by microscopic examination of lesion biopsy smears to visually confirm leishmania parasites as the cause. The use of more sophisticated diagnostic techniques that allow for species identification is usually restricted to research or clinical settings in non-endemic countries. The mainstays of cutaneous leishmaniasis treatment are pentavalent antimonials, with new oral and topical treatment alternatives only becoming available within the past few years; a vaccine currently does not exist. Disease prevention and control are difficult because of the complexity of cutaneous leishmaniasis epizoology, and the few options available for effective vector control.
            • Record: found
            • Abstract: found
            • Article: not found

            The relationship between leishmaniasis and AIDS: the second 10 years.

            To date, most Leishmania and human immunodeficiency virus (HIV) coinfection cases reported to WHO come from Southern Europe. Up to the year 2001, nearly 2,000 cases of coinfection were identified, of which 90% were from Spain, Italy, France, and Portugal. However, these figures are misleading because they do not account for the large proportion of cases in many African and Asian countries that are missed due to a lack of diagnostic facilities and poor reporting systems. Most cases of coinfection in the Americas are reported in Brazil, where the incidence of leishmaniasis has spread in recent years due to overlap with major areas of HIV transmission. In some areas of Africa, the number of coinfection cases has increased dramatically due to social phenomena such as mass migration and wars. In northwest Ethiopia, up to 30% of all visceral leishmaniasis patients are also infected with HIV. In Asia, coinfections are increasingly being reported in India, which also has the highest global burden of leishmaniasis and a high rate of resistance to antimonial drugs. Based on the previous experience of 20 years of coinfection in Europe, this review focuses on the management of Leishmania-HIV-coinfected patients in low-income countries where leishmaniasis is endemic.
              • Record: found
              • Abstract: found
              • Article: not found

              PCR diagnosis and characterization of Leishmania in local and imported clinical samples.

              Leishmaniasis diagnosis in regions where multiple species exist should identify each species directly in the clinical sample without parasite culturing. The sensitivity of two PCR approaches which amplify part of the ssu rRNA gene and the ribosomal internal transcribed spacer (ITS), respectively, was determined using human and dog blood seeded with Leishmania promastigotes. ssu-rDNA-PCR was more sensitive than ITS1-PCR, however species identification was not possible by the former approach. When a nested ITS1-PCR was used its sensitivity equaled the ssu-rDNA-PCR. Digestion of ITS1 amplicon with the restriction enzyme HaeIII distinguished all medically relevant Leishmania species. ITS1-PCR was used to diagnose 162 local and imported suspected cases of leishmaniasis in Israel, the Palestinian Authority and Germany. 113 cases (69.7%) were positive by PCR and species identification was possible in 110 samples. Leishmania DNA was also amplified and identified at the species level from archived non-stained and Giemsa stained microscope slides.

                Author and article information

                Indian J Med Res
                The Indian Journal of Medical Research
                Medknow Publications & Media Pvt Ltd (India )
                December 2011
                : 134
                : 6
                : 878-897
                Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
                [* ] Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
                Author notes
                Reprint requests: Dr Veeranoot Nissapatorn, Associate Professor, Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia e-mail: veeranoot@ ; nissapat@
                Copyright: © The Indian Journal of Medical Research

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Review Article


                Comment on this article