Blog
About

28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-451 inhibits cell growth and invasion by targeting MIF and is associated with survival in nasopharyngeal carcinoma

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MiRNAs play important roles in diverse biological processes including tumorigenesis. However, little is known about the function and mechanism of miR-451 in nasopharyngeal carcinoma (NPC).

          Methods

          Quantitative RT-PCR was used to quantify miR-451 expression in NPC cell lines and clinical tissues. Kaplan-Meier curves were used to estimate the association between miR-451 expression and survival. The MTT, colony formation, Transwell migration and invasion assays, and a xenograft model were performed. A miR-451 target was confirmed using luciferase reporter assays, quantitative RT-PCR, and Western blotting.

          Results

          MiR-451 was significantly downregulated in NPC cell lines and clinical tissues ( P < 0.01). Patients with low expression of miR-451 had poorer overall survival (HR, 1.98; 95% CI, 1.16-3.34; P = 0.01) and disease-free survival (HR, 1.68; 95% CI, 1.07-2.62; P = 0.02) than patients with high expression. MiR-451 was an independent prognostic factor in NPC in multivariate Cox regression analysis. Ectopic expression of miR-451 suppressed cell viability, colony formation, and cell migration and invasion in vitro, and inhibited xenograft tumor growth in vivo. MIF was verified as a direct target of miR-451, and MIF regulated NPC cell growth and invasion.

          Conclusions

          The newly identified miR-451/ MIF pathway provides insight into NPC initiation and progression, and may represent a novel therapeutic target.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

           K Livak,  T Schmittgen (2001)
          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs: genomics, biogenesis, mechanism, and function.

             David Bartel (2004)
            MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Global cancer statistics.

              The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.
                Bookmark

                Author and article information

                Affiliations
                [1 ]Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou People’s Republic of China
                Contributors
                Journal
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central
                1476-4598
                2013
                20 October 2013
                : 12
                : 123
                1476-4598-12-123
                10.1186/1476-4598-12-123
                3853142
                24138931
                Copyright © 2013 Liu et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research

                Oncology & Radiotherapy

                nasopharyngeal carcinoma, survival, invasion, cell growth, mif, mir-451

                Comments

                Comment on this article