11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiation therapy is a major primary treatment option for both localized early stage prostate cancer, and for advanced, regionally un-resectable, cancer. However, around 30% of patients still experience biochemical recurrence after radiation therapy within 10 years. Thus, identification of better biomarkers and new targets are urgently required to improve current therapeutic strategies. The miR-99 family has been shown to play an important role in the regulation of the DNA damage response, via targeting of the SWI/SNF chromatin remodeling factors, SMARCA5 and SMARCD1 in cell line models. In the present study, we have demonstrated that low expression of miR-99a and miR-100 is present in cell populations which are relatively radiation insensitive, for example in prostate cancer stem cells and in castration-resistant prostate cancer. Additionally, treatment of cells with the synthetic glucocorticoid, Dexamethasone resulted in decreased miR-99a and 100 expression, suggesting a new mechanism of miR-99a and 100 regulation in androgen-independent prostate cells. Strikingly, treatment of prostate cells with the glucocorticoid receptor inhibitor, Mifepristone was found to sensitize prostate cells to radiation by increasing the levels of miR-99a and miR-100. These results qualify the miR99 family as markers of radiation sensitivity and as potential therapeutic targets to improve efficiency of radiotherapy.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cancer and Radiation Therapy: Current Advances and Future Directions

          In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division) potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of translation and mRNA degradation by miRNAs and siRNAs.

            The control of translation and mRNA degradation is an important part of the regulation of gene expression. It is now clear that small RNA molecules are common and effective modulators of gene expression in many eukaryotic cells. These small RNAs that control gene expression can be either endogenous or exogenous micro RNAs (miRNAs) and short interfering RNAs (siRNAs) and can affect mRNA degradation and translation, as well as chromatin structure, thereby having impacts on transcription rates. In this review, we discuss possible mechanisms by which miRNAs control translation and mRNA degradation. An emerging theme is that miRNAs, and siRNAs to some extent, target mRNAs to the general eukaryotic machinery for mRNA degradation and translation control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency.

              Trimethylation on H3K27 (H3K27me3) mediated by Polycomb repressive complex 2 (PRC2) has been linked to embryonic stem cell (ESC) identity and pluripotency. EZH2, the catalytic subunit of PRC2, has been reported as the sole histone methyltransferase that methylates H3K27 and mediates transcriptional silencing. Analysis of Ezh2(-/-) ESCs suggests existence of an additional enzyme(s) catalyzing H3K27 methylation. We have identified EZH1, a homolog of EZH2 that is physically present in a noncanonical PRC2 complex, as an H3K27 methyltransferase in vivo and in vitro. EZH1 colocalizes with the H3K27me3 mark on chromatin and preferentially preserves this mark on development-related genes in Ezh2(-/-) ESCs. Depletion of Ezh1 in cells lacking Ezh2 abolishes residual methylation on H3K27 and derepresses H3K27me3 target genes, demonstrating a role of EZH1 in safeguarding ESC identity. Ezh1 partially complements Ezh2 in executing pluripotency during ESC differentiation, suggesting that cell-fate transitions require epigenetic specificity.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                9 August 2016
                21 June 2016
                : 7
                : 32
                : 51965-51980
                Affiliations
                1 The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
                2 Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK
                3 Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
                4 Prostate Cancer Research Center, Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere and Tampere University Hospital, Tampere, 33520 Finland
                5 Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Rayne Institute, London, SE5 9NU, UK
                6 Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
                Author notes
                Correspondence to: Holger H.H. Erb, holger.erb@ 123456york.ac.uk
                Article
                10207
                10.18632/oncotarget.10207
                5239528
                27340920
                3a4e6a0c-5793-4547-8dbf-c79dae678fa2
                Copyright: © 2016 Rane et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 May 2016
                : 9 June 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                cancer stem cells,mirna,radiotherapy,dna damage repair,mifepristone
                Oncology & Radiotherapy
                cancer stem cells, mirna, radiotherapy, dna damage repair, mifepristone

                Comments

                Comment on this article