23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably “hard” or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as “Wooden Breast”, through the use of RNA-sequencing technology.

          Methods

          We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways.

          Results

          Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested “Diseases and Disorders” such as connective tissue disorders, “Molecular and Cellular Functions” such as cellular assembly and organization, cellular function and maintenance, and cellular movement, “Physiological System Development and Function” such as tissue development, and embryonic development, and “Top Canonical Pathways” such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease.

          Conclusions

          There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12864-015-1623-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Direct multiplexed measurement of gene expression with color-coded probe pairs.

          We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.

            TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammatory processes in muscle injury and repair.

              Modified muscle use or injury can produce a stereotypic inflammatory response in which neutrophils rapidly invade, followed by macrophages. This inflammatory response coincides with muscle repair, regeneration, and growth, which involve activation and proliferation of satellite cells, followed by their terminal differentiation. Recent investigations have begun to explore the relationship between inflammatory cell functions and skeletal muscle injury and repair by using genetically modified animal models, antibody depletions of specific inflammatory cell populations, or expression profiling of inflamed muscle after injury. These studies have contributed to a complex picture in which inflammatory cells promote both injury and repair, through the combined actions of free radicals, growth factors, and chemokines. In this review, recent discoveries concerning the interactions between skeletal muscle and inflammatory cells are presented. New findings clearly show a role for neutrophils in promoting muscle damage soon after muscle injury or modified use. No direct evidence is yet available to show that neutrophils play a beneficial role in muscle repair or regeneration. Macrophages have also been shown capable of promoting muscle damage in vivo and in vitro through the release of free radicals, although other findings indicate that they may also play a role in muscle repair and regeneration through growth factors and cytokine-mediated signaling. However, this role for macrophages in muscle regeneration is still not definitive; other cells present in muscle can also produce the potentially regenerative factors, and it remains to be proven whether macrophage-derived factors are essential for muscle repair or regeneration in vivo. New evidence also shows that muscle cells can release positive and negative regulators of inflammatory cell invasion, and thereby play an active role in modulating the inflammatory process. In particular, muscle-derived nitric oxide can inhibit inflammatory cell invasion of healthy muscle and protect muscle from lysis by inflammatory cells in vivo and in vitro. On the other hand, muscle-derived cytokines can signal for inflammatory cell invasion, at least in vitro. The immediate challenge for advancing our current understanding of the relationships between muscle and inflammatory cells during muscle injury and repair is to place what has been learned in vitro into the complex and dynamic in vivo environment.
                Bookmark

                Author and article information

                Contributors
                (302) 831-8876 , abasht@udel.edu
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                21 May 2015
                21 May 2015
                2015
                : 16
                : 1
                : 399
                Affiliations
                [ ]Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE 19716 USA
                [ ]Maple Leaf Farms, Leesburg, IN USA
                Article
                1623
                10.1186/s12864-015-1623-0
                4438523
                25994290
                3a50398e-849c-4d1a-98a1-4027f69e4cdf
                © Mutryn et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 August 2014
                : 6 May 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Genetics
                chicken,myodegeneration,wooden breast,broiler,myopathy,pectoralis major,rna-sequencing,skeletal muscle

                Comments

                Comment on this article