9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fluctuations of protein three-dimensional structures and large-scale conformational transitions are crucial for the biological function of proteins and their complexes. Experimental studies of such phenomena remain very challenging and therefore molecular modeling can be a good alternative or a valuable supporting tool for the investigation of large molecular systems and long-time events. In this minireview, we present two alternative approaches to the coarse-grained (CG) modeling of dynamic properties of protein systems. We discuss two CG representations of polypeptide chains used for Monte Carlo dynamics simulations of protein local dynamics and conformational transitions, and highly simplified structure-based elastic network models of protein flexibility. In contrast to classical all-atom molecular dynamics, the modeling strategies discussed here allow the quite accurate modeling of much larger systems and longer-time dynamic phenomena. We briefly describe the main features of these models and outline some of their applications, including modeling of near-native structure fluctuations, sampling of large regions of the protein conformational space, or possible support for the structure prediction of large proteins and their complexes.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          iMODS: internal coordinates normal mode analysis server

          Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global dynamics of proteins: bridging between structure and function.

            Biomolecular systems possess unique, structure-encoded dynamic properties that underlie their biological functions. Recent studies indicate that these dynamic properties are determined to a large extent by the topology of native contacts. In recent years, elastic network models used in conjunction with normal mode analyses have proven to be useful for elucidating the collective dynamics intrinsically accessible under native state conditions, including in particular the global modes of motions that are robustly defined by the overall architecture. With increasing availability of structural data for well-studied proteins in different forms (liganded, complexed, or free), there is increasing evidence in support of the correspondence between functional changes in structures observed in experiments and the global motions predicted by these coarse-grained analyses. These observed correlations suggest that computational methods may be advantageously employed for assessing functional changes in structure and allosteric mechanisms intrinsically favored by the native fold.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement.

              Normal mode analysis (NMA) is a powerful tool for predicting the possible movements of a given macromolecule. It has been shown recently that half of the known protein movements can be modelled by using at most two low-frequency normal modes. Applications of NMA cover wide areas of structural biology, such as the study of protein conformational changes upon ligand binding, membrane channel opening and closure, potential movements of the ribosome, and viral capsid maturation. Another, newly emerging field of NMA is related to protein structure determination by X-ray crystallography, where normal mode perturbed models are used as templates for diffraction data phasing through molecular replacement (MR). Here we present ElNémo, a web interface to the Elastic Network Model that provides a fast and simple tool to compute, visualize and analyse low-frequency normal modes of large macro-molecules and to generate a large number of different starting models for use in MR. Due to the 'rotation-translation-block' (RTB) approximation implemented in ElNémo, there is virtually no upper limit to the size of the proteins that can be treated. Upon input of a protein structure in Protein Data Bank (PDB) format, ElNémo computes its 100 lowest-frequency modes and produces a comprehensive set of descriptive parameters and visualizations, such as the degree of collectivity of movement, residue mean square displacements, distance fluctuation maps, and the correlation between observed and normal-mode-derived atomic displacement parameters (B-factors). Any number of normal mode perturbed models for MR can be generated for download. If two conformations of the same (or a homologous) protein are available, ElNémo identifies the normal modes that contribute most to the corresponding protein movement. The web server can be freely accessed at http://igs-server.cnrs-mrs.fr/elnemo/index.html.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                06 November 2018
                November 2018
                : 19
                : 11
                : 3496
                Affiliations
                [1 ]Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; sekmi@ 123456chem.uw.edu.pl (S.K.); mkouza@ 123456chem.edu.uw.pl (M.K.); adawid@ 123456chem.uw.edu.pl (A.E.B-D.)
                [2 ]Nationwide Children’s Hospital, Columbus, OH 43205, USA
                Author notes
                [* ]Correspondence: Andrzej.Kloczkowski@ 123456nationwidechildrens.org (A.Kl.); kolinski@ 123456chem.uw.edu.pl (A.Ko.); Tel.: +48-22-55-26-365(A.Ko.)
                Author information
                https://orcid.org/0000-0002-1704-9797
                https://orcid.org/0000-0002-8830-2315
                Article
                ijms-19-03496
                10.3390/ijms19113496
                6274762
                30404229
                3a568857-2615-479f-817b-8e5bc232bb52
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 October 2018
                : 31 October 2018
                Categories
                Review

                Molecular biology
                protein dynamics,coarse-grained simulation,monte carlo dynamics,structural flexibility,large-scale dynamics,elastic network model

                Comments

                Comment on this article