11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of plyometric training on jumping, sprint performance, and lower body muscle strength in healthy adults: A systematic review and meta‐analyses

      1 , 1 , 1 , 1
      Scandinavian Journal of Medicine & Science in Sports
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Book: not found

          Cochrane Handbook for Systematic Reviews of Interventions

          Healthcare providers, consumers, researchers and policy makers are inundated with unmanageable amounts of information, including evidence from healthcare research. It has become impossible for all to have the time and resources to find, appraise and interpret this evidence and incorporate it into healthcare decisions. Cochrane Reviews respond to this challenge by identifying, appraising and synthesizing research-based evidence and presenting it in a standardized format, published in The Cochrane Library (www.thecochranelibrary.com).<p><i>The Cochrane Handbook for Systematic Reviews of Interventions</i> contains methodological guidance for the preparation and maintenance of Cochrane intervention reviews. Written in a clear and accessible format, it is the essential manual for all those preparing, maintaining and reading Cochrane reviews. Many of the principles and methods described here are appropriate for systematic reviews applied to other types of research and to systematic reviews of interventions undertaken by others. It is hoped therefore that this book will be invaluable to all those who want to understand the role of systematic reviews, critically appraise published reviews or perform reviews themselves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training.

            Plyometric training (PLY) is a very popular form of physical conditioning of healthy individuals that has been extensively studied over the last 3 decades. In this article, we critically review the available literature related to lower-body PLY and its effects on human neural and musculoskeletal systems, athletic performance and injury prevention. We also considered studies that combined lower-body PLY with other popular training modalities, as well as studies that applied PLY on non-rigid surfaces. The available evidence suggests that PLY, either alone or in combination with other typical training modalities, elicits numerous positive changes in the neural and musculoskeletal systems, muscle function and athletic performance of healthy individuals. Specifically, the studies have shown that long-term PLY (i.e. 3-5 sessions a week for 5-12 months) represents an effective training method for enhancing bone mass in prepubertal/early pubertal children, young women and premenopausal women. Furthermore, short-term PLY (i.e. 2-3 sessions a week for 6-15 weeks) can change the stiffness of various elastic components of the muscle-tendon complex of plantar flexors in both athletes and non-athletes. Short-term PLY also improves the lower-extremity strength, power and stretch-shortening cycle (SSC) muscle function in healthy individuals. These adaptive changes in neuromuscular function are likely the result of (i) an increased neural drive to the agonist muscles; (ii) changes in the muscle activation strategies (i.e. improved intermuscular coordination); (iii) changes in the mechanical characteristics of the muscle-tendon complex of plantar flexors; (iv) changes in muscle size and/or architecture; and (v) changes in single-fibre mechanics. Our results also show that PLY, either alone or in combination with other training modalities, has the potential to (i) enhance a wide range of athletic performance (i.e. jumping, sprinting, agility and endurance performance) in children and young adults of both sexes; and (ii) to reduce the risk of lower-extremity injuries in female athletes. Finally, available evidence suggests that short-term PLY on non-rigid surfaces (i.e. aquatic- or sand-based PLY) could elicit similar increases in jumping and sprinting performance as traditional PLY, but with substantially less muscle soreness. Although many issues related to PLY remain to be resolved, the results of this review allow us to recommend the use of PLY as a safe and effective training modality for improving lower-extremity muscle function and functional performance of healthy individuals. For performance enhancement and injury prevention in competitive sports, we recommend an implementation of PLY into a well designed, sport-specific physical conditioning programme.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The optimal training load for the development of dynamic athletic performance.

              This study was performed to determine which of three theoretically optimal resistance training modalities resulted in the greatest enhancement in the performance of a series of dynamic athletic activities. The three training modalities included 1) traditional weight training, 2) plyometric training, and 3) explosive weight training at the load that maximized mechanical power output. Sixty-four previously trained subjects were randomly allocated to four groups that included the above three training modalities and a control group. The experimental groups trained for 10 wk performing either heavy squat lifts, depth jumps, or weighted squat jumps. All subjects were tested prior to training, after 5 wk of training and at the completion of the training period. The test items included 1) 30-m sprint, 2) vertical jumps performed with and without a countermovement, 3) maximal cycle test, 4) isokinetic leg extension test, and 5) a maximal isometric test. The experimental group which trained with the load that maximized mechanical power achieved the best overall results in enhancing dynamic athletic performance recording statistically significant (P < 0.05) improvements on most test items and producing statistically superior results to the two other training modalities on the jumping and isokinetic tests.
                Bookmark

                Author and article information

                Journal
                Scandinavian Journal of Medicine & Science in Sports
                Scand J Med Sci Sports
                Wiley
                0905-7188
                1600-0838
                July 03 2019
                October 2019
                June 22 2019
                October 2019
                : 29
                : 10
                : 1453-1465
                Affiliations
                [1 ]Section for Sport Science, Department of Public Health Aarhus University Aarhus Denmark
                Article
                10.1111/sms.13487
                31136014
                3a597493-4d6d-47f9-aa8e-5acd324dd31a
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article