50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exploiting the curative potential of adoptive T-cell therapy for cancer

      1 , 1
      Immunological Reviews
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adoptive T-cell therapy (ACT) is a potent and flexible cancer treatment modality that can induce complete, durable regression of certain human malignancies. Long-term follow-up of patients receiving tumor-infiltrating lymphocytes (TILs) for metastatic melanoma reveals a substantial subset that experienced complete, lasting tumor regression - and may be cured. Increasing evidence points to mutated gene products as the primary immunological targets of TILs from melanomas. Recent technological advances permit rapid identification of the neoepitopes resulting from these somatic gene mutations and of T cells with reactivity against these targets. Isolation and adoptive transfer of these T cells may improve TIL therapy for melanoma and permit its broader application to non-melanoma tumors. Extension of ACT to other malignancies may also be possible through antigen receptor gene engineering. Tumor regression has been observed following transfer of T cells engineered to express chimeric antigen receptors against CD19 in B-cell malignancies or a T-cell receptor against NY-ESO-1 in synovial cell sarcoma and melanoma. Herein, we review recent clinical trials of TILs and antigen receptor gene therapy for advanced cancers. We discuss lessons from this experience and consider how they might be applied to realize the full curative potential of ACT.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.

          Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To explore the genetic origins of this cancer, we used whole-exome sequencing and gene copy number analyses to study 32 primary tumors. Tumors from patients with a history of tobacco use had more mutations than did tumors from patients who did not use tobacco, and tumors that were negative for human papillomavirus (HPV) had more mutations than did HPV-positive tumors. Six of the genes that were mutated in multiple tumors were assessed in up to 88 additional HNSCCs. In addition to previously described mutations in TP53, CDKN2A, PIK3CA, and HRAS, we identified mutations in FBXW7 and NOTCH1. Nearly 40% of the 28 mutations identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may function as a tumor suppressor gene rather than an oncogene in this tumor type.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma.

            An obstacle to cancer immunotherapy has been that the affinity of T-cell receptors (TCRs) for antigens expressed in tumors is generally low. We initiated clinical testing of engineered T cells expressing an affinity-enhanced TCR against HLA-A*01-restricted MAGE-A3. Open-label protocols to test the TCRs for patients with myeloma and melanoma were initiated. The first two treated patients developed cardiogenic shock and died within a few days of T-cell infusion, events not predicted by preclinical studies of the high-affinity TCRs. Gross findings at autopsy revealed severe myocardial damage, and histopathological analysis revealed T-cell infiltration. No MAGE-A3 expression was detected in heart autopsy tissues. Robust proliferation of the engineered T cells in vivo was documented in both patients. A beating cardiomyocyte culture generated from induced pluripotent stem cells triggered T-cell killing, which was due to recognition of an unrelated peptide derived from the striated muscle-specific protein titin. These patients demonstrate that TCR-engineered T cells can have serious and not readily predictable off-target and organ-specific toxicities and highlight the need for improved methods to define the specificity of engineered TCRs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues.

              The human CEA family has been fully characterized. It comprises 29 genes of which 18 are expressed; 7 belonging to the CEA subgroup and 11 to the pregnancy specific glycoprotein subgroup. CEA is an important tumor marker for colorectal and some other carcinomas. The CEA subgroup members are cell membrane associated and show a complex expression pattern in normal and cancerous tissues with notably CEA showing a selective epithelial expression. Several CEA subgroup members possess cell adhesion properties and the primordial member, biliary glycoprotein, seems to function in signal transduction or regulation of signal transduction possibly in association with other CEA sub-family members. A modified ITAM/ITIM motif is identified in the cytoplasmatic domain of BGP. A role of CEA in innate immunity is envisioned. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Journal
                Immunological Reviews
                Immunol Rev
                Wiley
                01052896
                January 2014
                January 2014
                December 13 2013
                : 257
                : 1
                : 56-71
                Affiliations
                [1 ]National Cancer Institute; Surgery Branch; Bethesda MD USA
                Article
                10.1111/imr.12132
                24329789
                3a64648c-1b14-4c39-9c45-6b3bbd0ad485
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article