+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Everything Hertz: methodological issues in short-term frequency-domain HRV


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Frequency analysis of the electrocardiographic RR interval is a common method of quantifying autonomic outflow by measuring the beat-to-beat modulation of the heart (heart rate variability; HRV). This review identifies a series of problems with the methods of doing so—the interpretation of low-frequency spectral power, the multiple use of equivalent normalized low frequency (LFnu), high frequency (HFnu) and ratio (LF/HF) terms, and the lack of control over extraneous variables, and reviews research in the calendar year 2012 to determine their prevalence and severity. Results support the mathematical equivalency of ratio units across studies, a reliance on those variables to explain autonomic outflow, and insufficient control of critical experimental variables. Research measurement of HRV has a substantial need for general methodological improvement.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt.

          The powers of the low-frequency (LF) and high-frequency (HF) oscillations characterizing heart rate variability (HRV) appear to reflect, in their reciprocal relationship, changes in the state of the sympathovagal balance occurring during numerous physiological and pathophysiological conditions. However, no adequate information is available on the quantitative resolution of this methodology. We studied 22 healthy volunteers (median age, 46.5 years) who were subjected after a rest period to a series of passive head-up tilt steps randomly chosen from the following angles: 15 degrees, 30 degrees, 45 degrees, 60 degrees, and 90 degrees. From the continuous ECG, after appropriate analog-to-digital conversion, a personal computer was used to compute, with an autoregressive methodology, time and frequency domain indexes of RR interval variability. Spectral and cross-spectral analysis with the simultaneously recorded respiratory signal excluded its contribution to LF. Age was significantly correlated to variance and to the absolute values in milliseconds squared of very-low-frequency (VLF), LF, and HF components. The tilt angle was correlated to both LF and HF (expressed in normalized units [nu]) and to the LF-to-HF ratio (r = .78, -.72, and .68; respectively). Lower levels of correlation were found with HF (in ms2) and RR interval. No correlation was present between tilt angle and variance, VLF, or LF (in ms2). Individual analysis confirmed that the use of nu provided the greatest consistency of results. Spectral analysis of HRV, using nu or LF-to-HF ratio, appears to be capable of providing a noninvasive quantitative evaluation of graded changes in the state of the sympathovagal balance.
            • Record: found
            • Abstract: found
            • Article: not found

            Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A Polyvagal Theory.

            The vagus, the 10th cranial nerve, contains pathways that contribute to the regulation of the internal viscera, including the heart. Vagal efferent fibers do not originate in a common brainstem structure. The Polyvagal Theory is introduced to explain the different functions of the two primary medullary source nuclei of the vagus: the nucleus ambiguus (NA) and the dorsal motor nucleus (DMNX). Although vagal pathways from both nuclei terminate on the sinoatrial node, it is argued that the fibers originating in NA are uniquely responsible for respiratory sinus arrhythmia (RSA). Divergent shifts in RSA and heart rate are explained by independent actions of DMNX and NA. The theory emphasizes a phylogenetic perspective and speculates that mammalian, but not reptilian, brainstem organization is characterized by a ventral vagal complex (including NA) related to processes associated with attention, motion, emotion, and communication. Various clinical disorders, such as sudden infant death syndrome and asthma, may be related to the competition between DMNX and NA.
              • Record: found
              • Abstract: found
              • Article: not found

              A quantitative systematic review of normal values for short-term heart rate variability in healthy adults.

              Heart rate variability (HRV) is a known risk factor for mortality in both healthy and patient populations. There are currently no normative data for short-term measures of HRV. A thorough review of short-term HRV data published since 1996 was therefore performed. Data from studies published after the 1996 Task Force report (i.e., between January 1997 and September 2008) and reporting short-term measures of HRV obtained in normally healthy individuals were collated and factors underlying discrepant values were identified. Forty-four studies met the pre-set inclusion criteria involving 21,438 participants. Values for short-term HRV measures from the literature were lower than Task Force norms. A degree of homogeneity for common measures of HRV in healthy adults was shown across studies. A number of studies demonstrate large interindividual variations (up to 260,000%), particularly for spectral measures. A number of methodological discrepancies underlined disparate values. These include a systematic failure within the literature (a) to recognize the importance of RR data recognition/editing procedures and (b) to question disparate HRV values observed in normally healthy individuals. A need for large-scale population studies and a review of the Task Force recommendations for short-term HRV that covers the full-age spectrum were identified. Data presented should be used to quantify reference ranges for short-term measures of HRV in healthy adult populations but should be undertaken with reference to methodological factors underlying disparate values. Recommendations for the measurement of HRV require updating to include current technologies. ©2010, The Authors. Journal compilation ©2010 Wiley Periodicals, Inc.

                Author and article information

                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                07 May 2014
                : 5
                Psychophysiology Group, Department of Psychology, University of Sydney Sydney, NSW, Australia
                Author notes

                Edited by: Karin Trimmel, Medical University of Vienna, Austria

                Reviewed by: Alessandro Capucci, Universita' Politecnica delle Marche, Italy; Steven Pogwizd, University of Alabama at Birmingham, USA; Shien-Fong Lin, Indiana University School of Medicine, USA

                *Correspondence: James A. J. Heathers, Psychophysiology Group, Department of Psychology, University of Sydney, Building A18, Griffith-Taylor Building, University of Sydney, Sydney, NSW 2006, Australia e-mail: jamesheathers@ 123456gmail.com

                This article was submitted to Cardiac Electrophysiology, a section of the journal Frontiers in Physiology.

                Copyright © 2014 Heathers.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 11, Tables: 2, Equations: 1, References: 109, Pages: 15, Words: 11817
                Review Article

                Anatomy & Physiology
                heart rate variability,autonomic nervous system,sympatho-vagal balance,sympathetic nervous system,parasympathetic nervous system


                Comment on this article