+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Central Oxytocin Mediates Inhibition of Sodium Appetite by Naloxone in Hypovolemic Rats

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Pituitary oxytocin (OT) secretion is inversely related to saline consumption in several experimental models of sodium appetite in rats. Because systemic OT administration does not inhibit sodium appetite, release of OT as a neurotransmitter within the brain, coincident with its secretion from the pituitary, may be related to inhibition of sodium ingestion. The present studies evaluated this possibility by increasing brain OT concentrations both exogenously and endogenously in rats with hypovolemia produced by subcutaneous administration of polyethylene glycol (PEG) solution. Intracerebroventricular (i.c.v) administration of OT completely abolished intake of 0.5 M NaCl in PEG-treated hypovolemic rats, but did not significantly affect PEG-stimulated water intakes. Endogenous OT secretion was stimulated by systemic treatment with naloxone, which has been shown to increase peripheral and central OT levels. In both one-bottle (0.5 M NaCl) and two-bottle (water and 0.5 M NaCl) drinking tests, intraperitoneal naloxone completely abolished sodium appetite in association with markedly increased pituitary secretion of OT. This inhibition of sodium appetite could be prevented by i.c.v. pretreatment with a specific OT-receptor antagonist, although the antagonist by itself did not affect PEG-stimulated sodium intake. These findings therefore support previous reports which have found that sodium appetite in rats is inhibited by treatments that elicit pituitary release of OT, and provide more direct evidence that brain OT is causally involved in the inhibition of sodium appetite stimulated by such treatments in rats.

          Related collections

          Author and article information

          S. Karger AG
          07 April 2008
          : 56
          : 2
          : 255-263
          Departments of Behavioral Neuroscience and Medicine, University of Pittsburgh, Pittsburgh, Pa., USA
          126236 Neuroendocrinology 1992;56:255–263
          © 1992 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Pages: 9
          Original Paper


          Comment on this article