35
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Growth Hormone Response to Oral Glucose Load: From Normal to Pathological Conditions

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exact physiological basis of acute growth hormone (GH) suppression by oral glucose is not fully understood. Glucose-mediated increase in hypothalamic somatostatin seems to be the most plausible explanation. Attempts to better understand its underlying mechanisms are compromised by species disparities in the response of GH to glucose load. While in humans, glucose inhibits GH release, the acute elevation of circulating glucose levels in rats has either no effect on GH secretion or may be stimulatory. Likewise, chronic hyperglycemia alters GH release in both humans and rats nonetheless in opposite directions. Several factors influence nadir GH concentrations including, age, gender, body mass index, pubertal age, and the type of assay used. Besides the classical suppressive effects of glucose on GH release, a paradoxical GH increase to oral glucose may be observed in around one third of patients with acromegaly as well as in various other disorders. Though its pathophysiology is poorly characterized, an altered interplay between somatostatin and GH-releasing hormone has been suggested and a link with pituitary ectopic expression of glucose-dependent insulinotropic polypeptide receptor has been recently demonstrated. A better understanding of the dynamics mediating GH response to glucose may allow a more optimal use of the OGTT as a diagnostic tool in various conditions, especially acromegaly.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Consensus Statement on acromegaly therapeutic outcomes

          The 11th Acromegaly Consensus Conference in April 2017 was convened to update recommendations on therapeutic outcomes for patients with acromegaly. Consensus guidelines on the medical management of acromegaly were last published in 2014; since then, new pharmacological agents have been developed and new approaches to treatment sequencing have been considered. Thirty-seven experts in the management of patients with acromegaly reviewed the current literature and assessed changes in drug approvals, clinical practice standards and clinical opinion. They considered current treatment outcome goals with a focus on the impact of current and emerging somatostatin receptor ligands, growth hormone receptor antagonists and dopamine agonists on biochemical, clinical, tumour mass and surgical outcomes. The participants discussed factors that would determine pharmacological choices as well as the proposed place of each agent in the guidelines. We present consensus recommendations highlighting how acromegaly management could be optimized in clinical practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Guidelines for acromegaly management: an update.

            The Acromegaly Consensus Group reconvened in November 2007 to update guidelines for acromegaly management. The meeting participants comprised 68 pituitary specialists, including neurosurgeons and endocrinologists with extensive experience treating patients with acromegaly. EVIDENCE/CONSENSUS PROCESS: Goals of treatment and the appropriate imaging and biochemical and clinical monitoring of patients with acromegaly were enunciated, based on the available published evidence. The group developed a consensus on the approach to managing acromegaly including appropriate roles for neurosurgery, medical therapy, and radiation therapy in the management of these patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of liver-derived insulin-like growth factor-I.

              IGF-I is expressed in virtually every tissue of the body, but with much higher expression in the liver than in any other tissue. Studies using mice with liver-specific IGF-I knockout have demonstrated that liver-derived IGF-I, constituting a major part of circulating IGF-I, is an important endocrine factor involved in a variety of physiological and pathological processes. Detailed studies comparing the impact of liver-derived IGF-I and local bone-derived IGF-I demonstrate that both sources of IGF-I can stimulate longitudinal bone growth. We propose here that liver-derived circulating IGF-I and local bone-derived IGF-I to some extent have overlapping growth-promoting effects and might have the capacity to replace each other (= redundancy) in the maintenance of normal longitudinal bone growth. Importantly, and in contrast to the regulation of longitudinal bone growth, locally derived IGF-I cannot replace (= lack of redundancy) liver-derived IGF-I for the regulation of a large number of other parameters including GH secretion, cortical bone mass, kidney size, prostate size, peripheral vascular resistance, spatial memory, sodium retention, insulin sensitivity, liver size, sexually dimorphic liver functions, and progression of some tumors. It is clear that a major role of liver-derived IGF-I is to regulate GH secretion and that some, but not all, of the phenotypes in the liver-specific IGF-I knockout mice are indirect, mediated via the elevated GH levels. All of the described multiple endocrine effects of liver-derived IGF-I should be considered in the development of possible novel treatment strategies aimed at increasing or reducing endocrine IGF-I activity.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2019
                April 2019
                25 January 2019
                : 108
                : 3
                : 244-255
                Affiliations
                Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1185, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
                Author notes
                *Philippe Chanson, MD, MS, Service d’Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, FR–94275 Le Kremlin Bicêtre (France), E-Mail philippe.chanson@aphp.fr
                Author information
                https://orcid.org/0000-0001-5096-5722
                Article
                497214 Neuroendocrinology 2019;108:244–255
                10.1159/000497214
                30685760
                3a7f9bc6-bbc7-491f-852d-3f2aeb6b89df
                © 2019 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 27 September 2018
                : 24 January 2019
                Page count
                Figures: 1, Tables: 6, Pages: 12
                Categories
                At the Cutting Edge

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Growth hormone,Paradoxical growth hormone response,Biological variability,Oral glucose tolerance test

                Comments

                Comment on this article