139
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ecology and Transmission of Buruli Ulcer Disease: A Systematic Review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Buruli ulcer is a neglected emerging disease that has recently been reported in some countries as the second most frequent mycobacterial disease in humans after tuberculosis. Cases have been reported from at least 32 countries in Africa (mainly west), Australia, Southeast Asia, China, Central and South America, and the Western Pacific. Large lesions often result in scarring, contractual deformities, amputations, and disabilities, and in Africa, most cases of the disease occur in children between the ages of 4–15 years. This environmental mycobacterium, Mycobacterium ulcerans, is found in communities associated with rivers, swamps, wetlands, and human-linked changes in the aquatic environment, particularly those created as a result of environmental disturbance such as deforestation, dam construction, and agriculture. Buruli ulcer disease is often referred to as the “mysterious disease” because the mode of transmission remains unclear, although several hypotheses have been proposed. The above review reveals that various routes of transmission may occur, varying amongst epidemiological setting and geographic region, and that there may be some role for living agents as reservoirs and as vectors of M. ulcerans, in particular aquatic insects, adult mosquitoes or other biting arthropods. We discuss traditional and non-traditional methods for indicting the roles of living agents as biologically significant reservoirs and/or vectors of pathogens, and suggest an intellectual framework for establishing criteria for transmission. The application of these criteria to the transmission of M. ulcerans presents a significant challenge.

          Author Summary

          Buruli ulcer (BU) is a serious necrotizing cutaneous infection caused by Mycobacterium ulcerans. It is a neglected emerging disease that has recently been reported in some countries as the second most frequent mycobacterial disease in humans after tuberculosis (TB). Cases have been reported from at least 32 countries in Africa (mainly west), Australia, Southeast Asia, China, Central and South America, and the Western Pacific. BU is a disease found in rural areas located near wetlands (ponds, swamps, marshes, impoundments, backwaters) and slow-moving rivers, especially in areas prone to human-made disturbance and flooding. Despite considerable research on this disease in recent years, the mode of transmission remains unclear, although several hypotheses have been proposed. In this article we review the current state of knowledge on the ecology and transmission of M. ulcerans in Africa and Australia, discuss traditional and non-traditional methods for investigating transmission, and suggest an intellectual framework for establishing criteria for transmission.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence.

          Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe human skin disease that occurs primarily in Africa and Australia. Infection with M. ulcerans results in persistent severe necrosis without an acute inflammatory response. The presence of histopathological changes distant from the site of infection suggested that pathogenesis might be toxin mediated. A polyketide-derived macrolide designated mycolactone was isolated that causes cytopathicity and cell cycle arrest in cultured L929 murine fibroblasts. Intradermal inoculation of purified toxin into guinea pigs produced a lesion similar to that of Buruli ulcer in humans. This toxin may represent one of a family of virulence factors associated with pathology in mycobacterial diseases such as leprosy and tuberculosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer.

            Mycobacterium ulcerans is found in aquatic ecosystems and causes Buruli ulcer in humans, a neglected but devastating necrotic disease of subcutaneous tissue that is rampant throughout West and Central Africa. Here, we report the complete 5.8-Mb genome sequence of M. ulcerans and show that it comprises two circular replicons, a chromosome of 5632 kb and a virulence plasmid of 174 kb. The plasmid is required for production of the polyketide toxin mycolactone, which provokes necrosis. Comparisons with the recently completed 6.6-Mb genome of Mycobacterium marinum revealed >98% nucleotide sequence identity and genome-wide synteny. However, as well as the plasmid, M. ulcerans has accumulated 213 copies of the insertion sequence IS2404, 91 copies of IS2606, 771 pseudogenes, two bacteriophages, and multiple DNA deletions and rearrangements. These data indicate that M. ulcerans has recently evolved via lateral gene transfer and reductive evolution from the generalist, more rapid-growing environmental species M. marinum to become a niche-adapted specialist. Predictions based on genome inspection for the production of modified mycobacterial virulence factors, such as the highly abundant phthiodiolone lipids, were confirmed by structural analyses. Similarly, 11 protein-coding sequences identified as M. ulcerans-specific by comparative genomics were verified as such by PCR screening a diverse collection of 33 strains of M. ulcerans and M. marinum. This work offers significant insight into the biology and evolution of mycobacterial pathogens and is an important component of international efforts to counter Buruli ulcer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans.

              Mycobacterium ulcerans (MU), an emerging human pathogen harbored by aquatic insects, is the causative agent of Buruli ulcer, a devastating skin disease rife throughout Central and West Africa. Mycolactone, an unusual macrolide with cytotoxic and immunosuppressive properties, is responsible for the massive s.c. tissue destruction seen in Buruli ulcer. Here, we show that MU contains a 174-kb plasmid, pMUM001, bearing a cluster of genes encoding giant polyketide synthases (PKSs), and polyketide-modifying enzymes, and demonstrate that these are necessary and sufficient for mycolactone synthesis. This is a previously uncharacterized example of plasmid-mediated virulence in a Mycobacterium, and the emergence of MU as a pathogen most likely reflects the acquisition of pMUM001 by horizontal transfer. The 12-membered core of mycolactone is produced by two giant, modular PKSs, MLSA1 (1.8 MDa) and MLSA2 (0.26 MDa), whereas its side chain is synthesized by MLSB (1.2 MDa), a third modular PKS highly related to MLSA1. There is an extreme level of sequence identity within the different domains of the MLS cluster (>97% amino acid identity), so much so that the 16 ketosynthase domains seem functionally identical. This is a finding of significant consequence for our understanding of polyketide biochemistry. Such detailed knowledge of mycolactone will further the investigation of its mode of action and the development of urgently needed therapeutic strategies to combat Buruli ulcer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                December 2010
                14 December 2010
                : 4
                : 12
                : e911
                Affiliations
                [1 ]Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
                [2 ]Department of Entomology and Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
                [3 ]Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
                [4 ]Department of Biology, Millersville University, Millersville, Pennsylvania, United States of America
                [5 ]Austin Health, Melbourne, Australia
                [6 ]Department of Biology, University of Dayton, Dayton, Ohio, United States of America
                [7 ]University of Ghana, East Legon, Ghana
                Kwame Nkrumah University of Science and Technology (KNUST) School of Medical Sciences, Ghana
                Author notes

                Conceived and designed the experiments: RWM EDW PLCS JRW PDRJ MEB. Analyzed the data: RWM EDW DAB. Contributed reagents/materials/analysis tools: PLCS JRW PDRJ MEB DAB. Wrote the paper: RWM. Wrote part of the criteria section of the paper: EDW. Wrote part of the pathogen section: PLCS. Contributed to analyses of particular studies and wrote one section: JRW. Wrote part of the paper on Australia transmission: PDRJ. Wrote part of the landscape epidemiology section: MEB.

                Article
                10-PNTD-RA-1405R3
                10.1371/journal.pntd.0000911
                3001905
                21179505
                3a820008-adf9-4d1f-a27f-9c55aef3abd1
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 21 July 2010
                : 11 November 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Ecology
                Ecology/Behavioral Ecology
                Ecology/Environmental Microbiology
                Ecology/Evolutionary Ecology
                Ecology/Plant-Environment Interactions
                Ecology/Spatial and Landscape Ecology
                Infectious Diseases/Bacterial Infections
                Infectious Diseases/Epidemiology and Control of Infectious Diseases
                Infectious Diseases/Neglected Tropical Diseases
                Infectious Diseases/Skin Infections
                Infectious Diseases/Tropical and Travel-Associated Diseases
                Microbiology
                Microbiology/Environmental Microbiology
                Microbiology/Medical Microbiology
                Microbiology/Parasitology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article