5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Responses of sagittally aligned Purkinje cells during perturbed locomotion: relation of climbing fiber activation to simple spike modulation.

      1 ,
      Journal of neurophysiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          1. The purpose of these experiments is to test the hypothesis that the synchronous activation of sagittally aligned Purkinje cells by a physiologically relevant stimulus is associated with an increase in the simple spike responses of the same neurons. 2. This hypothesis was tested using a perturbed locomotion paradigm in decerebrate locomoting ferrets. The responses of 3-5 sagittally aligned Purkinje cells were recorded simultaneously in response to the intermittent perturbation of the forelimb during swing phase. A data analysis is introduced, the real time postsynaptic response (RTPR), that permits the quantification of the simple spike responses of Purkinje cells in a manner that can be related to their complex spike responses on a trial-by-trial basis. 3. The data support the above hypothesis by illustrating that the amplitude of the combined simple spike responses across the population of Purkinje cells is correlated with the extent to which their climbing fiber inputs are synchronously activated. These findings together with an analysis of the gain-change ratio support the view that the synchronous climbing fiber input may be responsible for mediating this increased responsiveness. 4. More generally, the data suggest that the task- and/or behaviorally dependent activation of sagittal strips of climbing fiber inputs may provide a mechanism whereby the responsiveness of discrete populations of Purkinje cells can be selectively regulated, specifying the groups of neurons that will be most dramatically modulated by mossy fiber inputs activated by the same conditions.

          Related collections

          Author and article information

          Journal
          J. Neurophysiol.
          Journal of neurophysiology
          American Physiological Society
          0022-3077
          0022-3077
          Nov 1992
          : 68
          : 5
          Affiliations
          [1 ] Division of Neurobiology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013.
          Article
          10.1152/jn.1992.68.5.1820
          1479447
          3a87f907-57d2-4440-9cf7-a29c9e2f4348
          History

          Comments

          Comment on this article