10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Surface Expression, Function, and Pharmacology of Disease-Associated Mutations in the Membrane Domain of the Human GluN2B Subunit

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          N-methyl-D-aspartate receptors (NMDARs), glutamate-gated ion channels, mediate signaling at the majority of excitatory synapses in the nervous system. Recent sequencing data for neurological and psychiatric patients have indicated numerous mutations in genes encoding for NMDAR subunits. Here, we present surface expression, functional, and pharmacological analysis of 11 de novo missense mutations of the human hGluN2B subunit (P553L; V558I; W607C; N615I; V618G; S628F; E657G; G820E; G820A; M824R; L825V) located in the pre-M1, M1, M2, M3, and M4 membrane regions. These variants were identified in patients with intellectual disability, developmental delay, epileptic symptomatology, and autism spectrum disorder. Immunofluorescence microscopy indicated that the ratio of surface-to-total NMDAR expression was reduced for hGluN1/hGluN2B(S628F) receptors and increased for for hGluN1/hGluN2B(G820E) receptors. Electrophysiological recordings revealed that agonist potency was altered in hGluN1/hGluN2B(W607C; N615I; and E657G) receptors and desensitization was increased in hGluN1/hGluN2B(V558I) receptors. The probability of channel opening of hGluN1/hGluN2B (V558I; W607C; V618G; and L825V) receptors was diminished ~10-fold when compared to non-mutated receptors. Finally, the sensitivity of mutant receptors to positive allosteric modulators of the steroid origin showed that glutamate responses induced in hGluN1/hGluN2B(V558I; W607C; V618G; and G820A) receptors were potentiated by 59–96% and 406-685% when recorded in the presence of 20-oxo-pregn-5-en-3β-yl sulfate (PE-S) and androst-5-en-3β-yl hemisuccinate (AND-hSuc), respectively. Surprisingly hGluN1/hGluN2B(L825V) receptors were strongly potentiated, by 197 and 1647%, respectively, by PE-S and AND-hSuc. Synaptic-like responses induced by brief glutamate application were also potentiated and the deactivation decelerated. Further, we have used homology modeling based on the available crystal structures of GluN1/GluN2B NMDA receptor followed by molecular dynamics simulations to try to relate the functional consequences of mutations to structural changes. Overall, these data suggest that de novo missense mutations of the hGluN2B subunit located in membrane domains lead to multiple defects that manifest by the NMDAR loss of function that can be rectified by steroids. Our results provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with hypofunction of the glutamatergic system.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          CHARMM-GUI: a web-based graphical user interface for CHARMM.

          CHARMM is an academic research program used widely for macromolecular mechanics and dynamics with versatile analysis and manipulation tools of atomic coordinates and dynamics trajectories. CHARMM-GUI, http://www.charmm-gui.org, has been developed to provide a web-based graphical user interface to generate various input files and molecular systems to facilitate and standardize the usage of common and advanced simulation techniques in CHARMM. The web environment provides an ideal platform to build and validate a molecular model system in an interactive fashion such that, if a problem is found through visual inspection, one can go back to the previous setup and regenerate the whole system again. In this article, we describe the currently available functional modules of CHARMM-GUI Input Generator that form a basis for the advanced simulation techniques. Future directions of the CHARMM-GUI development project are also discussed briefly together with other features in the CHARMM-GUI website, such as Archive and Movie Gallery. 2008 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.

            An in situ study of mRNAs encoding NMDA receptor subunits in the developing rat CNS revealed that, at all stages, the NR1 gene is expressed in virtually all neurons, whereas the four NR2 transcripts display distinct expression patterns. NR2B and NR2D mRNAs occur prenatally, whereas NR2A and NR2C mRNAs are first detected near birth. All transcripts except NR2D peak around P20. NR2D mRNA, present mainly in midbrain structures, peaks around P7 and thereafter decreases to adult levels. Postnatally, NR2B and NR2C transcript levels change in opposite directions in the cerebellar internal granule cell layer. In the adult hippocampus, NR2A and NR2B mRNAs are prominent in CA1 and CA3 pyramidal cells, but NR2C and NR2D mRNAs occur in different subsets of interneurons. Recombinant binary NR1-NR2 channels show comparable Ca2+ permeabilities, but marked differences in voltage-dependent Mg2+ block and in offset decay time constants. Thus, the distinct expression profiles and functional properties of NR2 subunits provide a basis for NMDA channel heterogeneity in the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term potentiation and memory.

              M A Lynch (2004)
              One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                06 April 2018
                2018
                : 11
                : 110
                Affiliations
                [1] 1Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS) , Prague, Czechia
                [2] 2Department of Physiology, Faculty of Science, Charles University , Prague, Czechia
                [3] 3Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences (CAS) , Prague, Czechia
                Author notes

                Edited by: Argentina Lario Lago, University of California, San Francisco, United States

                Reviewed by: Angelo Keramidas, The University of Queensland, Australia; Bodo Laube, Technische Universität Darmstadt, Germany

                *Correspondence: Ladislav Vyklicky ladislav.vyklicky@ 123456fgu.cas.cz

                †Co-first authors.

                Article
                10.3389/fnmol.2018.00110
                5897658
                29681796
                3a9491a7-f920-4962-aa29-af28e2c4fedd
                Copyright © 2018 Vyklicky, Krausova, Cerny, Ladislav, Smejkalova, Kysilov, Korinek, Danacikova, Horak, Chodounska, Kudova and Vyklicky.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 December 2017
                : 20 March 2018
                Page count
                Figures: 9, Tables: 3, Equations: 10, References: 82, Pages: 20, Words: 13246
                Funding
                Funded by: Grantová Agentura České Republiky 10.13039/501100001824
                Award ID: 17-02300S
                Award ID: 16-03913Y
                Funded by: Grantová Agentura, Univerzita Karlova 10.13039/100007543
                Award ID: 880216
                Award ID: 468217
                Funded by: Akademie Věd České Republiky 10.13039/501100004240
                Award ID: 67985823
                Award ID: MSM200111601
                Funded by: Technologická Agentura České Republiky 10.13039/501100002969
                Award ID: TE01020028
                Funded by: Ministerstvo Zdravotnictví Ceské Republiky 10.13039/501100003243
                Award ID: NV15-29370A
                Funded by: European Regional Development Fund 10.13039/501100008530
                Award ID: CZ.02.1.01/0.0/0.0/16_025/0007444
                Award ID: CZ.1.05/1.1.00/02.0109
                Categories
                Neuroscience
                Original Research

                Neurosciences
                nmda receptor,glun2b,de novo missense mutations,neuropsychiatric disorder,neurosteroids

                Comments

                Comment on this article