16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Phagocyte-Like NADPH Oxidase and ROS Generation in Type 2 Diabetic ZDF Rat and Human Islets : Role of Rac1–JNK1/2 Signaling Pathway in Mitochondrial Dysregulation in the Diabetic Islet

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          To determine the subunit expression and functional activation of phagocyte-like NADPH oxidase (Nox), reactive oxygen species (ROS) generation and caspase-3 activation in the Zucker diabetic fatty (ZDF) rat and diabetic human islets.

          RESEARCH DESIGN AND METHODS

          Expression of core components of Nox was quantitated by Western blotting and densitometry. ROS levels were quantitated by the 2′,7′-dichlorofluorescein diacetate method. Rac1 activation was quantitated using the gold-labeled immunosorbent assay kit.

          RESULTS

          Levels of phosphorylated p47 phox, active Rac1, Nox activity, ROS generation, Jun NH 2-terminal kinase (JNK) 1/2 phosphorylation, and caspase-3 activity were significantly higher in the ZDF islets than the lean control rat islets. Chronic exposure of INS 832/13 cells to glucolipotoxic conditions resulted in increased JNK1/2 phosphorylation and caspase-3 activity; such effects were largely reversed by SP600125, a selective inhibitor of JNK. Incubation of normal human islets with high glucose also increased the activation of Rac1 and Nox. Lastly, in a manner akin to the ZDF diabetic rat islets, Rac1 expression, JNK1/2, and caspase-3 activation were also significantly increased in diabetic human islets.

          CONCLUSIONS

          We provide the first in vitro and in vivo evidence in support of an accelerated Rac1–Nox–ROS–JNK1/2 signaling pathway in the islet β-cell leading to the onset of mitochondrial dysregulation in diabetes.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Small GTP-binding proteins.

          Small GTP-binding proteins (G proteins) exist in eukaryotes from yeast to human and constitute a superfamily consisting of more than 100 members. This superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families. They regulate a wide variety of cell functions as biological timers (biotimers) that initiate and terminate specific cell functions and determine the periods of time for the continuation of the specific cell functions. They furthermore play key roles in not only temporal but also spatial determination of specific cell functions. The Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. Many upstream regulators and downstream effectors of small G proteins have been isolated, and their modes of activation and action have gradually been elucidated. Cascades and cross-talks of small G proteins have also been clarified. In this review, functions of small G proteins and their modes of activation and action are described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Initiation and execution of lipotoxic ER stress in pancreatic beta-cells.

            Free fatty acids (FFA) cause apoptosis of pancreatic beta-cells and might contribute to beta-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. We studied here the molecular mechanisms implicated in FFA-induced ER stress initiation and apoptosis in INS-1E cells, FACS-purified primary beta-cells and human islets exposed to oleate and/or palmitate. Treatment with saturated and/or unsaturated FFA led to differential ER stress signaling. Palmitate induced more apoptosis and markedly activated the IRE1, PERK and ATF6 pathways, owing to a sustained depletion of ER Ca(2+) stores, whereas the unsaturated FFA oleate led to milder PERK and IRE1 activation and comparable ATF6 signaling. Non-metabolizable methyl-FFA analogs induced neither ER stress nor beta-cell apoptosis. The FFA-induced ER stress response was not modified by high glucose concentrations, suggesting that ER stress in primary beta-cells is primarily lipotoxic, and not glucolipotoxic. Palmitate, but not oleate, activated JNK. JNK inhibitors reduced palmitate-mediated AP-1 activation and apoptosis. Blocking the transcription factor CHOP delayed palmitate-induced beta-cell apoptosis. In conclusion, saturated FFA induce ER stress via ER Ca(2+) depletion. The IRE1 and resulting JNK activation contribute to beta-cell apoptosis. PERK activation by palmitate also contributes to beta-cell apoptosis via CHOP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs.

              The Rho subfamily of GTPases is involved in control of cell morphology in mammals and yeast. The mammalian Rac and Cdc42 proteins control formation of lamellipodia and filopodia, respectively. These proteins also activate MAP kinase (MAPK) cascades that regulate gene expression. Constitutively activated forms of Rac and Cdc42Hs are efficient activators of a cascade leading to JNK and p38/Mpk2 activation. RhoA did not exhibit this activity, and none of the proteins activated the ERK subgroup of MAPKs. JNK, but not ERK, activation was also observed in response to Dbl, an oncoprotein that acts as a nucleotide exchange factor for Cdc42Hs. Results with dominant interfering alleles place Rac1 as an intermediate between Ha-Ras and MEKK in the signaling cascade leading from growth factor receptors and v-Src to JNK activation. JNK and p38 activation are likely to contribute to the biological effects of Rac, Cdc42Hs, and Dbl on cell growth and proliferation.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                November 2011
                17 October 2011
                : 60
                : 11
                : 2843-2852
                Affiliations
                [1] 1Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
                [2] 2Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois
                [3] 3Kresge Eye Institute, Wayne State University, Detroit, Michigan
                [4] 4β-Cell Biochemistry Laboratory, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
                Author notes
                Corresponding author: Anjaneyulu Kowluru, akowluru@ 123456med.wayne.edu .
                Article
                0809
                10.2337/db11-0809
                3198065
                21911753
                3aafa2e2-75cd-407e-aee2-2f8cf0e9ecb6
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 13 June 2011
                : 09 August 2011
                Categories
                Islet Studies

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article