2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of modified corneal cross-linking with intrastromal voriconazole for the treatment of fungal corneal ulcer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study aimed to evaluate the efficacy of modified corneal cross-linking (CXL) for the treatment of fungal corneal ulcers compared with that following intrastromal voriconazole injection. In total, 31 patients with fungal corneal ulcers treated at The General Hospital of Northern Theater Command between October 2017 and October 2019 were enrolled. Among them, 10 eyes were treated with ultraviolet A (UV-A)/riboflavin CXL (CXL group), whilst 21 eyes were treated with debridement combined with intrastromal voriconazole (stromal injection group). Preoperative microbiological examination was performed in both groups, and evaluated using Fisher's exact test. Postoperatively, infection control and total efficacy rates, localized lesion, ulcer healing rate 1 week after surgery, visual acuity and complications were evaluated using Fisher's exact test, however visual acuity was analyzed by mixed-model ANOVA. The results showed that the pre-operative species distribution between the CXL and stromal injection groups did not significantly differ. The infection control rate in the CXL group was notably higher compared with that in the stromal injection group (P=0.04). Furthermore, the total efficacy rate in the CXL group was also markedly higher compared with that in the stromal injection group, though no statistically significant differences were observed. Localized lesions were observed in nine eyes (90.0%) in the CXL group and nine eyes (42.9%) in the stromal injection group (P=0.02). However, the rate of ulcer healing at 1 week postoperatively and the logarithm of the minimum angle of resolution (logMAR) of visual acuity were not found to be significantly different between the two groups. In terms of complications, with the exception of one patient in the CXL group exhibiting loss of corneal transparency and one patient in the stromal injection group presenting with partial corneal thinning, no other forms of complications were observed. In conclusion, the present study suggested that CXL could have a beneficial impact for treating fungal corneal ulcers in the aspects of infection control, localized lesions and accelerated epithelialization. In addition, except the loss of corneal transparency, this treatment approach could be applied with reduced risks of adverse events.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Safety of UVA-riboflavin cross-linking of the cornea.

          To study potential damage to ocular tissue during corneal collagen cross-linking (X-linking) by means of the riboflavin/UVA (370 nm) approach. Comparison of the currently used technique with officially accepted guidelines regarding direct UV damage and the damage created by the induced free radicals (photochemical damage). The currently used UVA radiant exposure of 5.4 mJ/cm and the corresponding irradiance of 3 mW/cm2 is below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damage caused by the free radicals, the damage thresholds for keratocytes and endothelial cells are 0.45 and 0.35 mW/cm, respectively. In a 400-microm-thick cornea saturated with riboflavin, the irradiance at the endothelial level was 0.18 mW/cm, which is a factor of 2 smaller than the damage threshold. After corneal X-linking, the stroma is depopulated of keratocytes approximately 300 microm deep. Repopulation of this area takes up to 6 months. As long as the cornea treated has a minimum thickness of 400 microm (as recommended), the corneal endothelium will not experience damage, nor will deeper structures such as lens and retina. The light source should provide a homogenous irradiance, avoiding hot spots.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased resistance of crosslinked cornea against enzymatic digestion.

            Collagen-crosslinking using combined riboflavin/ UVA treatment has been developed by us as a new treatment for keratoconus by stiffening the collagenous matrix. Recently, we have started to use the same method for the treatment of corneal ulcers. The aim of the present study was to evaluate the influence of the crosslinking treatment on the resistance of the cornea against enzymatic degradation. 60 enucleated porcine eyes were treated with the photosensitizer riboflavin and UVA-irradiation (370 nm; irradiance of 1, 2 or 3 mW/cm2) for 30 minutes and compared with 20 untreated control eyes. After crosslinking treatment, the corneal buttons were trephined and exposed to pepsin, trypsin and collagenase solutions. The extent of the corneal digestion was monitored daily. Selected cases were examined by light microscopy. The corneal buttons crosslinked with riboflavin/ UVA at 3 mW/cm2 were dissolved only by day 13 following pepsin digestion and by day 14 following collagenase treatment versus 6 days in the untreated control corneas. Digestion by trypsin was observed on day 5 in buttons crosslinked at 3 mW/cm2 compared to day 2 in the control corneas. Microscopically, a prolonged preservation especially of the anterior portion of the crosslinked corneas could be demonstrated. Photochemical crosslinking of the cornea using riboflavin and UVA results in a markedly increased resistance versus collagen digesting enzymes. The findings support the use of the new method in the treatment of corneal ulcers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light.

              To examine to which depth of the cornea the stiffening effect is biomechanically detectable. Department of Ophthalmology, University of Dresden, Dresden, Germany. Of 40 enucleated porcine eyes, 20 eyes were treated with the photosensitizer riboflavin (0.1%) and ultraviolet A (UVA) light (370 nm, 3 mW/cm2, 30 minutes); the other 20 eyes served as control. From each eye, 2 flaps of 200 microm thickness were cut with a microkeratome, and strips of 5 mm width and 7 mm length were prepared. Stress-strain behavior was measured with a material tester to characterize the stiffening effect. Five pairs of human donor eyes were tested in the same way. In porcine corneas, the stiffening effect was stronger in the anterior-treated flaps than in the posterior-treated flaps and the control flaps (P = .001). A 5% strain was achieved at a stress of 261.7 +/- 133.2 x 10(3) N/m2 in the anterior-treated flaps and 104.1 +/- 52.7 x 10(3) N/m2 in the anterior control flaps. The posterior-treated flaps (105.0 +/- 55.8 x 10(3) N/m2) and the posterior control flaps (103.7 +/- 61.8 x 10(3) N/m2) showed no difference (P = .95). A similar stiffening effect was observed in human eyes, but contrary to findings in porcine corneas, in human corneas the anterior control flaps were stiffer than the posterior control flaps (P = .027). Treatment of the cornea with riboflavin and UVA significantly stiffened the cornea only in the anterior 200 microm. This depth-dependent stiffening effect may be explained by the absorption behavior for UVA in the riboflavin-treated cornea. Sixty-five percent to 70% of UVA irradiation was absorbed within the anterior 200 microm and only 20% in the next 200 microm. Therefore, deeper structures and even the endothelium are not affected.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                July 2021
                21 May 2021
                21 May 2021
                : 22
                : 1
                : 786
                Affiliations
                [1 ]Department of Ophthalmology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
                [2 ]Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
                Author notes
                Correspondence to: Professor Lixin Song, Department of Dermatology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P.R. China songlixin2020@ 123456163.com
                Article
                ETM-0-0-10218
                10.3892/etm.2021.10218
                8145909
                34055085
                3ab5ba0c-7fd4-4579-9d8a-4099aeb06e7e
                Copyright: © Chen et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 11 June 2020
                : 01 March 2021
                Funding
                Funding: No funding was received.
                Categories
                Articles

                Medicine
                corneal cross-linking,debridement combined with intrastromal voriconazole injection,fungal corneal ulcer,fungal keratitis,visual acuity

                Comments

                Comment on this article