47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      New structure enlivens interest in P2X receptors

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          P2X receptors are ATP-gated membrane ion channels with multifarious roles, including afferent sensation, autocrine feedback loops, and inflammation. Their molecular operation has been less well elucidated compared with other ligand-gated channels (nicotinic acetylcholine receptors, ionotropic glutamate receptors). This will change with the recent publication of the crystal structure of a closed P2X receptor. Here we re-interpret results from 15 years of experiments using site-directed mutagenesis with a model based on the new structure. Previous predictions of receptor stoichiometry, the extracellular ATP binding site, inter-subunit contacts, and many details of the permeation pathway fall into place in three dimensions. We can therefore quickly understand how the channel operates at the molecular level. This is important not only for ion- channel aficionados, but also those engaged in developing effective antagonists at P2X receptors for potential therapeutic use.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury.

          Pain after nerve damage is an expression of pathological operation of the nervous system, one hallmark of which is tactile allodynia-pain hypersensitivity evoked by innocuous stimuli. Effective therapy for this pain is lacking, and the underlying mechanisms are poorly understood. Here we report that pharmacological blockade of spinal P2X4 receptors (P2X4Rs), a subtype of ionotropic ATP receptor, reversed tactile allodynia caused by peripheral nerve injury without affecting acute pain behaviours in naive animals. After nerve injury, P2X4R expression increased strikingly in the ipsilateral spinal cord, and P2X4Rs were induced in hyperactive microglia but not in neurons or astrocytes. Intraspinal administration of P2X4R antisense oligodeoxynucleotide decreased the induction of P2X4Rs and suppressed tactile allodynia after nerve injury. Conversely, intraspinal administration of microglia in which P2X4Rs had been induced and stimulated, produced tactile allodynia in naive rats. Taken together, our results demonstrate that activation of P2X4Rs in hyperactive microglia is necessary for tactile allodynia after nerve injury and is sufficient to produce tactile allodynia in normal animals. Thus, blocking P2X4Rs in microglia might be a new therapeutic strategy for pain induced by nerve injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altered cytokine production in mice lacking P2X(7) receptors.

            The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              P2X receptors as cell-surface ATP sensors in health and disease.

              P2X receptors are membrane ion channels activated by the binding of extracellular adenosine triphosphate (ATP). For years their functional significance was consigned to distant regions of the autonomic nervous system, but recent work indicates several further key roles, such as afferent signalling, chronic pain, and in autocrine loops of endothelial and epithelial cells. P2X receptors have a molecular architecture distinct from other ion channel protein families, and have several unique functional properties.
                Bookmark

                Author and article information

                Journal
                Trends Pharmacol Sci
                Trends Pharmacol. Sci
                Trends in Pharmacological Sciences
                Published By Elsevier In Association With The International Union Of Pharmacology
                0165-6147
                1873-3735
                May 2010
                May 2010
                : 31
                : 5-2
                : 229-237
                Affiliations
                [1 ]Faculty of Medical and Human Sciences, University of Manchester, UK
                [2 ]Faculty of Biological Sciences, University of Leeds, UK
                Article
                TIPS779
                10.1016/j.tips.2010.02.004
                2954318
                20227116
                3ab9a551-c214-4213-86fb-df62414d110a
                © 2010 Elsevier Ltd.

                This document may be redistributed and reused, subject to certain conditions.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                Pharmacology & Pharmaceutical medicine

                Comments

                Comment on this article