25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental Impacts of Jatropha curcas Biodiesel in India

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The water footprint of bioenergy.

          All energy scenarios show a shift toward an increased percentage of renewable energy sources, including biomass. This study gives an overview of water footprints (WFs) of bioenergy from 12 crops that currently contribute the most to global agricultural production: barley, cassava, maize, potato, rapeseed, rice, rye, sorghum, soybean, sugar beet, sugar cane, and wheat. In addition, this study includes jatropha, a suitable energy crop. Since climate and production circumstances differ among regions, calculations have been performed by country. The WF of bioelectricity is smaller than that of biofuels because it is more efficient to use total biomass (e.g., for electricity or heat) than a fraction of the crop (its sugar, starch, or oil content) for biofuel. The WF of bioethanol appears to be smaller than that of biodiesel. For electricity, sugar beet, maize, and sugar cane are the most favorable crops [50 m(3)/gigajoule (GJ)]. Rapeseed and jatropha, typical energy crops, are disadvantageous (400 m(3)/GJ). For ethanol, sugar beet, and potato (60 and 100 m(3)/GJ) are the most advantageous, followed by sugar cane (110 m(3)/GJ); sorghum (400 m(3)/GJ) is the most unfavorable. For biodiesel, soybean and rapeseed show to be the most favorable WF (400 m(3)/GJ); jatropha has an adverse WF (600 m(3)/GJ). When expressed per L, the WF ranges from 1,400 to 20,000 L of water per L of biofuel. If a shift toward a greater contribution of bioenergy to energy supply takes place, the results of this study can be used to select the crops and countries that produce bioenergy in the most water-efficient way.
            • Record: found
            • Abstract: found
            • Article: not found

            Environmental impacts of water use in global crop production: hotspots and trade-offs with land use.

            Global crop production is causing pressure on water and land resources in many places. In addition to local resource management, the related environmental impacts of commodities traded along international supply chains need to be considered and managed accordingly. For this purpose, we calculate the specific water consumption and land use for the production of 160 crops and crop groups, covering most harvested mass on global cropland. We quantify indicators for land and water scarcity with high geospatial resolution. This facilitates spatially explicit crop-specific resource management and regionalized life cycle assessment of processed products. The vast cultivation of irrigated wheat, rice, cotton, maize, and sugar cane, which are major sources of food, bioenergy, and fiber, drives worldwide water scarcity. According to globally averaged production, substituting biofuel for crude oil would have a lower impact on water resources than substituting cotton for polyester. For some crops, water scarcity impacts are inversely related to land resource stress, illustrating that water consumption is often at odds with land use. On global average, maize performs better than rice and wheat in the combined land/water assessment. High spatial variability of water and land use related impacts underlines the importance of appropriate site selection for agricultural activities.
              • Record: found
              • Abstract: not found
              • Article: not found

              Prospects of biodiesel from Jatropha in India: A review

                Author and article information

                Journal
                J Biomed Biotechnol
                J. Biomed. Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2012
                5 August 2012
                : 2012
                : 623070
                Affiliations
                1Technology and Society Lab, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland
                2Biotechnology and Bioresources Division, The Energy and Resources Institute (TERI), Darbari Seth Block, Lodhi Road, New Delhi-110 003, India
                3Ecological Systems Design Group, Swiss Federal Institute of Technology (ETH), Schafmattstrasse 6, 8093 Zürich, Switzerland
                Author notes

                Academic Editor: Kok Tat Tan

                Article
                10.1155/2012/623070
                3420329
                22919274
                3ac0545e-d511-4e75-8a45-1240a8d119ac
                Copyright © 2012 Simon Gmünder et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 March 2012
                : 8 June 2012
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article

                Related Documents Log