59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phase IIa Clinical Trial of Curcumin for the Prevention of Colorectal Neoplasia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Curcumin is derived from the spice tumeric and has antiinflammatory and antineoplastic effects in vitro and in animal models, including preventing aberrant crypt foci (ACF) and adenomas in murine models of colorectal carcinogenesis. Inhibiting the production of the procarcinogenic eicosanoids prostaglandin E₂ (PGE₂) and 5-hydroxyeicosatetraenoic acid (5-HETE) can suppress carcinogenesis in rodents. Curcumin reduces mucosal concentrations of PGE₂ (via inhibition of cyclooxygenases 1 and 2) and 5-HETE (via inhibition of 5-lipoxygenase) in rats. Although preclinical data support curcumin activity in many sites, the poor bioavailability reported for this agent supports its use in the colorectum. We assessed the effects of oral curcumin (2 g or 4 g per day for 30 days) on PGE₂ within ACF (primary endpoint), 5-HETE, ACF number, and proliferation in a nonrandomized, open-label clinical trial in 44 eligible smokers with eight or more ACF on screening colonoscopy. We assessed pre- and posttreatment concentrations of PGE₂ and 5-HETE by liquid chromatography tandem mass spectroscopy in ACF and normal-tissue biopsies; ACF number via rectal endoscopy; proliferation by Ki-67 immunohistochemistry; and curcumin concentrations by high-performance liquid chromatography in serum and rectal mucosal samples. Forty-one subjects completed the study. Neither dose of curcumin reduced PGE₂ or 5-HETE within ACF or normal mucosa or reduced Ki-67 in normal mucosa. A significant 40% reduction in ACF number occurred with the 4-g dose (P < 0.005), whereas ACF were not reduced in the 2-g group. The ACF reduction in the 4-g group was associated with a significant, five-fold increase in posttreatment plasma curcumin/conjugate levels (versus pretreatment; P = 0.009). Curcumin was well tolerated at both 2 g and 4 g. Our data suggest that curcumin can decrease ACF number, and this is potentially mediated by curcumin conjugates delivered systemically.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Bioavailability of curcumin: problems and promises.

          Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase II trial of curcumin in patients with advanced pancreatic cancer.

            Pancreatic cancer is almost always lethal, and the only U.S. Food and Drug Administration-approved therapies for it, gemcitabine and erlotinib, produce objective responses in 18 months; interestingly, one additional patient had a brief, but marked, tumor regression (73%) accompanied by significant increases (4- to 35-fold) in serum cytokine levels (IL-6, IL-8, IL-10, and IL-1 receptor antagonists). No toxicities were observed. Curcumin down-regulated expression of NF-kappaB, cyclooxygenase-2, and phosphorylated signal transducer and activator of transcription 3 in peripheral blood mononuclear cells from patients (most of whom had baseline levels considerably higher than those found in healthy volunteers). Whereas there was considerable interpatient variation in plasma curcumin levels, drug levels peaked at 22 to 41 ng/mL and remained relatively constant over the first 4 weeks. Oral curcumin is well tolerated and, despite its limited absorption, has biological activity in some patients with pancreatic cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance.

              Curcumin, a polyphenolic antioxidant derived from a dietary spice, exhibits anticancer activity in rodents and in humans. Its efficacy appears to be related to induction of glutathione S-transferase enzymes, inhibition of prostaglandin E(2) (PGE(2)) production, or suppression of oxidative DNA adduct (M(1)G) formation. We designed a dose-escalation study to explore the pharmacology of curcumin in humans. Fifteen patients with advanced colorectal cancer refractory to standard chemotherapies consumed capsules compatible with curcumin doses between 0.45 and 3.6 g daily for up to 4 months. Levels of curcumin and its metabolites in plasma, urine, and feces were analyzed by high-pressure liquid chromatography and mass spectrometry. Three biomarkers of the potential activity of curcumin were translated from preclinical models and measured in patient blood leukocytes: glutathione S-transferase activity, levels of M(1)G, and PGE(2) production induced ex vivo. Dose-limiting toxicity was not observed. Curcumin and its glucuronide and sulfate metabolites were detected in plasma in the 10 nmol/L range and in urine. A daily dose of 3.6 g curcumin engendered 62% and 57% decreases in inducible PGE(2) production in blood samples taken 1 hour after dose on days 1 and 29, respectively, of treatment compared with levels observed immediately predose (P < 0.05). A daily oral dose of 3.6 g of curcumin is advocated for Phase II evaluation in the prevention or treatment of cancers outside the gastrointestinal tract. PGE(2) production in blood and target tissue may indicate biological activity. Levels of curcumin and its metabolites in the urine can be used to assess general compliance.
                Bookmark

                Author and article information

                Journal
                Cancer Prevention Research
                Cancer Prev Res
                American Association for Cancer Research (AACR)
                1940-6207
                1940-6215
                March 02 2011
                March 2011
                March 2011
                March 02 2011
                : 4
                : 3
                : 354-364
                Article
                10.1158/1940-6207.CAPR-10-0098
                4136551
                21372035
                3ac6c101-30a1-456f-961a-cd22704504d6
                © 2011
                History

                Comments

                Comment on this article