21
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative Genomics of Herpesviridae Family to Look for Potential Signatures of Human Infecting Strains

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Herpesviridae family is one of the significant viral families which comprises major pathogens of a wide range of hosts. This family includes at least eight species of viruses which are known to infect humans. This family has evolved 180–220 million years ago and the present study highlights that it is still evolving and more genes can be added to the repertoire of this family. In addition, its core-genome includes important viral proteins including glycoprotein B and helicase. Most of the infections caused by human herpesviruses have no definitive cure; thus, search for new therapeutic strategies is necessary. The present study finds core-genome of human herpesviruses that differs from that of Herpesviridae family and nonhuman herpes strains of this family and might be a putative target for vaccine development. The phylogenetic reconstruction based upon the protein sequences of core gene set of Herpesviridae family reveals the sharp splits of its different subfamilies and supports the hypothesis of coevolution of viruses with their hosts. In addition, data mining for cis-elements in the genomes of human herpesviruses results in the prediction of numerous regulatory elements which can be used for regulating the expression of viral based vectors implicated in gene therapies.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome".

          The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microbial pan-genome.

            A decade after the beginning of the genomic era, the question of how genomics can describe a bacterial species has not been fully addressed. Experimental data have shown that in some species new genes are discovered even after sequencing the genomes of several strains. Mathematical modeling predicts that new genes will be discovered even after sequencing hundreds of genomes per species. Therefore, a bacterial species can be described by its pan-genome, which is composed of a "core genome" containing genes present in all strains, and a "dispensable genome" containing genes present in two or more strains and genes unique to single strains. Given that the number of unique genes is vast, the pan-genome of a bacterial species might be orders of magnitude larger than any single genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry.

              Herpes simplex virus type-1 and type-2 are highly prevalent human pathogens causing life-long infections. The process of infection begins when the virions bind heparan sulfate moieties present on host cell surfaces. This initial attachment then triggers a cascade of molecular interactions involving multiple viral and host cell proteins and receptors, leading to penetration of the viral nucleocapsid and tegument proteins into the cytoplasm. The nucleocapsid is then transported to the nuclear membrane and the viral DNA is released for replication in the nucleus. Recent studies have revealed that herpes simplex virus entry or penetration into cells may be a highly complex process and the mechanism of entry may demonstrate unique cell-type specificities. Although specificities clearly exist, past and ongoing studies demonstrate that herpes simplex virus may share certain common receptors and pathways that are also used by many other human viruses. This minireview helps to shed light on recent revelations on the herpes simplex virus entry process.
                Bookmark

                Author and article information

                Journal
                Int J Genomics
                Int J Genomics
                IJG
                International Journal of Genomics
                Hindawi Publishing Corporation
                2314-436X
                2314-4378
                2016
                26 May 2016
                : 2016
                : 9543274
                Affiliations
                School of Basic Sciences, Indian Institute of Technology, Mandi 175005, India
                Author notes

                Academic Editor: Giuliana Napolitano

                Author information
                http://orcid.org/0000-0002-1095-4030
                http://orcid.org/0000-0002-8290-7006
                http://orcid.org/0000-0001-9270-8775
                Article
                10.1155/2016/9543274
                4899598
                27314006
                3ac8c143-0f1e-4e77-a889-3a0bd3f71cb3
                Copyright © 2016 Vikas Sharma et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 January 2016
                : 24 April 2016
                Categories
                Research Article

                Comments

                Comment on this article