30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain.

      The FASEB Journal
      Animals, Anti-Anxiety Agents, isolation & purification, pharmacology, Antidepressive Agents, Behavior, Animal, drug effects, Boswellia, chemistry, Brain, metabolism, Cell Line, Diterpenes, Female, Humans, Mice, Mice, Inbred C57BL, Mice, Knockout, Plants, Medicinal, Proto-Oncogene Proteins c-fos, Psychotropic Drugs, Recombinant Proteins, genetics, TRPV Cation Channels, agonists, deficiency

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3(-/-) mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3(+/+) mice. It had no effect on keratinocytes from TRPV3(-/-) mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          An introduction to TRP channels.

          The aim of this review is to provide a basic framework for understanding the function of mammalian transient receptor potential (TRP) channels, particularly as they have been elucidated in heterologous expression systems. Mammalian TRP channel proteins form six-transmembrane (6-TM) cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Selected functional properties of TRP channels from each subfamily are summarized in this review. Although a single defining characteristic of TRP channel function has not yet emerged, TRP channels may be generally described as calcium-permeable cation channels with polymodal activation properties. By integrating multiple concomitant stimuli and coupling their activity to downstream cellular signal amplification via calcium permeation and membrane depolarization, TRP channels appear well adapted to function in cellular sensation. Our review of recent literature implicating TRP channels in neuronal growth cone steering suggests that TRPs may function more widely in cellular guidance and chemotaxis. The TRP channel gene family and its nomenclature, the encoded proteins and alternatively spliced variants, and the rapidly expanding pharmacology of TRP channels are summarized in online supplemental material.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A capsaicin-receptor homologue with a high threshold for noxious heat.

            Pain-producing heat is detected by several classes of nociceptive sensory neuron that differ in their thermal response thresholds. The cloned capsaicin receptor, also known as the vanilloid receptor subtype 1 (VR1), is a heat-gated ion channel that has been proposed to mediate responses of small-diameter sensory neurons to moderate (43 degrees C) thermal stimuli. VR1 is also activated by protons, indicating that it may participate in the detection of noxious thermal and chemical stimuli in vivo. Here we identify a structurally related receptor, VRL-1, that does not respond to capsaicin, acid or moderate heat. Instead, VRL-1 is activated by high temperatures, with a threshold of approximately 52 degrees C. Within sensory ganglia, VRL-1 is most prominently expressed by a subset of medium- to large-diameter neurons, making it a candidate receptor for transducing high-threshold heat responses in this class of cells. VRL-1 transcripts are not restricted to the sensory nervous system, indicating that this channel may be activated by stimuli other than heat. We propose that responses to noxious heat involve these related, but distinct, ion-channel subtypes that together detect a range of stimulus intensities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Forced swimming test in mice: a review of antidepressant activity.

              Among all animal models, the forced swimming test (FST) remains one of the most used tools for screening antidepressants. This paper reviews some of the main aspects of the FST in mice. Most of the sensitivity and variability factors that were assessed on the FST are summarized. We have summarized data found in the literature of antidepressant effects on the FST in mice. From this data set, we have extrapolated information on baseline levels of strain, and sensitivity against antidepressants. We have shown that many parameters have to be considered in this test to gain good reliability. Moreover, there was a fundamental inter-strain difference of response in the FST. The FST is a good screening tool with good reliability and predictive validity. Strain is one of the most important parameters to consider. Swiss and NMRI mice can be used to discriminate the mechanisms of action of drugs. CD-1 seems to be the most useful strain for screening purposes, but this needs to be confirmed with some spontaneous locomotor activity studies.
                Bookmark

                Author and article information

                Comments

                Comment on this article