27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of COPD (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on pathophysiological processes underlying Chronic Obstructive Pulmonary Disease (COPD) interventions, patient focused education, and self-management protocols. Sign up for email alerts here.

      39,063 Monthly downloads/views I 2.893 Impact Factor I 5.2 CiteScore I 1.16 Source Normalized Impact per Paper (SNIP) I 0.804 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of repeated Toll-like receptors 2 and 4 stimulation in COPD alveolar macrophages

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          COPD is a progressive inflammatory airway disease characterized by increased numbers of alveolar macrophages in the lungs. Bacterial colonization of the lungs is a common feature in COPD and can promote inflammation through continual and repeated Toll-like receptor (TLR) stimulation. We have studied the response of COPD alveolar macrophages to repetitive stimulation with TLR2 and TLR4 ligands. We investigated the effect of sequential stimulation with different ligands to determine whether this results in tolerance or amplification of the immune response.

          Methods

          We stimulated alveolar macrophages from COPD patients (n=9) and smokers (n=8) with the TLR4 agonist lipopolysaccharide (LPS) or the TLR2 agonist Pam3CSK4 for 24 hours before restimulating again for 24 hours. Cytokine protein release and gene expression were investigated.

          Results

          Repetitive stimulation of COPD and smokers macrophages with LPS for both 24-hour periods caused a reduction in tumor necrosis factor α, CCL5, and IL-10 production compared to cells that were not exposed initially to LPS. IL-6 and CXCL8 production were not significantly altered following repetitive LPS stimulation. The same pattern was observed for repeated stimulation with Pam3CSK4. Using COPD macrophages, LPS followed by Pam3CSK4 stimulation increased the levels of all cytokines compared to media followed by Pam3CSK4.

          Conclusion

          TLR tolerance in COPD alveolar macrophages occurs after repetitive stimulation with the same TLR ligand, but this only occurs for selected cytokines. CXCL8 production is not reduced after repetitive TLR stimulation with the same ligand; this may be an important mechanism for the increased CXCL8 levels that have been observed in COPD. We showed that TLR4 stimulation followed by TLR2 stimulation does not cause tolerance, but enhances cytokine production. This may be a relevant mechanism by which bacteria cause excessive inflammation in COPD patients.

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma.

          Asthma and chronic obstructive pulmonary disease are characterized by chronic airway inflammation. Studies using bronchoalveolar lavage (BAL) have shown an increased proportion of eosinophils in the BAL fluid from asthmatics compared with that from normal subjects, whereas studies of chronic obstructive pulmonary disease (COPD) have shown increased numbers of neutrophils. Induced sputum allows sampling of respiratory tract secretions from patients and control subjects, providing a noninvasive method of studying airway secretions and allowing characterization of cells and measurement of soluble markers. We investigated whether induced sputum was a useful method of studying airway fluid from patients with moderate to severe COPD and whether it could be used to compare inflammation in this condition with that in asthma. An initial reproducibility study was undertaken. Sputum was induced twice in 13 patients with severe COPD at a 14-d interval. Total and differential cell counts were carried out and were found to be reproducible over this period. Sputum was then induced in 14 patients with COPD, 23 patients with asthma, 12 healthy cigarette smokers, and 16 normal nonsmoking control subjects. We found a significant increase in neutrophils and increased concentrations of tumor necrosis factor-alpha (TNF alpha) and interleukin-8 (IL-8) in the patients with COPD compared with the smoking and nonsmoking control subjects. Interleukin-8, but not TNF alpha, was significantly higher in the COPD group than in the asthmatic group. We conclude that the cytokines TNF alpha and IL-8 may be involved in the inflammation in COPD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defective macrophage phagocytosis of bacteria in COPD.

            Exacerbations of chronic obstructive pulmonary disease (COPD) are an increasing cause of hospitalisations and are associated with accelerated progression of airflow obstruction. Approximately half of COPD exacerbations are associated with bacteria and many patients have lower airways colonisation. This suggests that bacterial infection in COPD could be due to reduced pathogen removal. This study investigated whether bacterial clearance by macrophages is defective in COPD. Phagocytosis of fluorescently labelled polystyrene beads and Haemophillus influenzae and Streptococcus pneumoniae by alveolar macrophages and monocyte-derived macrophages (MDM) was assessed by fluorimetry and flow cytometry. Receptor expression was measured by flow cytometry. Alveolar macrophages and MDM phagocytosed polystyrene beads similarly. There was no difference in phagocytosis of beads by MDM from COPD patients compared with cells from smokers and nonsmokers. MDM from COPD patients showed reduced phagocytic responses to S. pneumoniae and H. influenzae compared with nonsmokers and smokers. This was not associated with alterations in cell surface receptor expression of toll-like receptor (TLR)2, TLR4, macrophage receptor with collagenous structure, cluster of differentiation (CD)163, CD36 or mannose receptor. Budesonide, formoterol or azithromycin did not suppress phagocytosis suggesting that reduced responses in COPD MDM were not due to medications. COPD macrophage innate responses are suppressed and may lead to bacterial colonisation and increased exacerbation frequency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Role of Alveolar Macrophages in Chronic Obstructive Pulmonary Disease

              Alveolar macrophages (AMs) represent a unique leukocyte population that responds to airborne irritants and microbes. This distinct microenvironment coordinates the maturation of long-lived AMs, which originate from fetal blood monocytes and self-renew through mechanisms dependent on GM-CSF and CSF-1 signaling. Peripheral blood monocytes can also replenish lung macrophages; however, this appears to occur in a stimuli specific manner. In addition to mounting an appropriate immune response during infection and injury, AMs actively coordinate the resolution of inflammation through efferocytosis of apoptotic cells. Any perturbation of this process can lead to deleterious responses. In chronic obstructive pulmonary disease (COPD), there is an accumulation of airway macrophages that do not conform to the classic M1/M2 dichotomy. There is also a skewed transcriptome profile that favors expression of wound-healing M2 markers, which is reflective of a deficiency to resolve inflammation. Endogenous mediators that can promote an imbalance in inhibitory M1 vs. healing M2 macrophages are discussed, as they are the plausible mechanisms underlying why AMs fail to effectively resolve inflammation and restore normal lung homeostasis in COPD.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                02 March 2018
                : 13
                : 771-780
                Affiliations
                [1 ]Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester University NHS Foundation Trust, Manchester
                [2 ]Refractory Respiratory Inflammation DPU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
                Author notes
                Correspondence: Dave Singh, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester University NHS Foundation Trust, The Langley Building, Southmoor Road, Wythenshawe, Manchester M23 9QZ, UK, Tel +44 161 946 4073, Email dsingh@ 123456meu.org.uk
                [*]

                These authors contributed equally to this work

                Article
                copd-13-771
                10.2147/COPD.S97071
                5841324
                29535517
                3ad31038-48cc-4063-8529-b94205d8ff98
                © 2018 Lea et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Respiratory medicine
                alveolar macrophages,tolerance,copd
                Respiratory medicine
                alveolar macrophages, tolerance, copd

                Comments

                Comment on this article