+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Advances in covalent kinase inhibitors

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).


          Over the past decade, covalent kinase inhibitors (CKI) have seen a resurgence in drug discovery. Covalency affords a unique set of advantages as well as challenges relative to their non-covalent counterpart. After reversible protein target recognition and binding, covalent inhibitors irreversibly modify a proximal nucleophilic residue on the protein via reaction with an electrophile. To date, the acrylamide group remains the predominantly employed electrophile in CKI development, with its incorporation in the majority of clinical candidates and FDA approved covalent therapies. Nonetheless, in recent years considerable efforts have ensued to characterize alternative electrophiles that exhibit irreversible or reversibly covalent binding mechanisms towards cysteine thiols and other amino acids. This review article provides a comprehensive overview of CKIs reported in the literature over a decade period, 2007–2018. Emphasis is placed on the rationale behind warhead choice, optimization approach, and inhibitor design. Current FDA approved CKIs are also highlighted, in addition to a detailed analysis of the common trends and themes observed within the listed data set.

          Related collections

          Most cited references 328

          • Record: found
          • Abstract: found
          • Article: not found

          A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women.

          Randomized trials have shown that low-dose aspirin decreases the risk of a first myocardial infarction in men, with little effect on the risk of ischemic stroke. There are few similar data in women. We randomly assigned 39,876 initially healthy women 45 years of age or older to receive 100 mg of aspirin on alternate days or placebo and then monitored them for 10 years for a first major cardiovascular event (i.e., nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes). During follow-up, 477 major cardiovascular events were confirmed in the aspirin group, as compared with 522 in the placebo group, for a nonsignificant reduction in risk with aspirin of 9 percent (relative risk, 0.91; 95 percent confidence interval, 0.80 to 1.03; P=0.13). With regard to individual end points, there was a 17 percent reduction in the risk of stroke in the aspirin group, as compared with the placebo group (relative risk, 0.83; 95 percent confidence interval, 0.69 to 0.99; P=0.04), owing to a 24 percent reduction in the risk of ischemic stroke (relative risk, 0.76; 95 percent confidence interval, 0.63 to 0.93; P=0.009) and a nonsignificant increase in the risk of hemorrhagic stroke (relative risk, 1.24; 95 percent confidence interval, 0.82 to 1.87; P=0.31). As compared with placebo, aspirin had no significant effect on the risk of fatal or nonfatal myocardial infarction (relative risk, 1.02; 95 percent confidence interval, 0.84 to 1.25; P=0.83) or death from cardiovascular causes (relative risk, 0.95; 95 percent confidence interval, 0.74 to 1.22; P=0.68). Gastrointestinal bleeding requiring transfusion was more frequent in the aspirin group than in the placebo group (relative risk, 1.40; 95 percent confidence interval, 1.07 to 1.83; P=0.02). Subgroup analyses showed that aspirin significantly reduced the risk of major cardiovascular events, ischemic stroke, and myocardial infarction among women 65 years of age or older. In this large, primary-prevention trial among women, aspirin lowered the risk of stroke without affecting the risk of myocardial infarction or death from cardiovascular causes, leading to a nonsignificant finding with respect to the primary end point. Copyright 2005 Massachusetts Medical Society.
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms and functions of Eph and ephrin signalling.

              • Record: found
              • Abstract: found
              • Article: not found

              Protein kinase inhibitors: insights into drug design from structure.

              Protein kinases are targets for treatment of a number of diseases. This review focuses on kinase inhibitors that are in the clinic or in clinical trials and for which structural information is available. Structures have informed drug design and have illuminated the mechanism of inhibition. We review progress with the receptor tyrosine kinases (growth factor receptors EGFR, VEGFR, and FGFR) and nonreceptor tyrosine kinases (Bcr-Abl), where advances have been made with cancer therapeutic agents such as Herceptin and Gleevec. Among the serine-threonine kinases, p38, Rho-kinase, cyclin-dependent kinases, and Chk1 have been targeted with productive results for inflammation and cancer. Structures have provided insights into targeting the inactive or active form of the kinase, for targeting the global constellation of residues at the ATP site or less conserved additional pockets or single residues, and into targeting noncatalytic domains.

                Author and article information

                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                May 11 2020
                : 49
                : 9
                : 2617-2687
                [1 ]Department of Chemical & Physical Sciences
                [2 ]University of Toronto
                [3 ]Mississauga
                [4 ]Canada
                [5 ]Department of Chemistry
                [6 ]Ludwig Institute for Cancer Research
                [7 ]Brussels
                [8 ]Belgium
                [9 ]Institute of Animal Breeding and Genetics
                [10 ]University of Veterinary Medicine
                [11 ]1210 Vienna
                [12 ]Austria
                © 2020
                Self URI (article page):


                Comment on this article