23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PEEP Role in ICU and Operating Room: From Pathophysiology to Clinical Practice

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Positive end expiratory pressure (PEEP) may prevent cyclic opening and collapsing alveoli in acute respiratory distress syndrome (ARDS) patients, but it may play a role also in general anesthesia. This review is organized in two sections. The first one reports the pathophysiological effect of PEEP on thoracic pressure and hemodynamic and cerebral perfusion pressure. The second section summarizes the knowledge and evidence of the use of PEEP in general anesthesia and intensive care. More specifically, for intensive care this review refers to ARDS and traumatic brain injured patients.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.

          In patients with the acute respiratory distress syndrome, massive alveolar collapse and cyclic lung reopening and overdistention during mechanical ventilation may perpetuate alveolar injury. We determined whether a ventilatory strategy designed to minimize such lung injuries could reduce not only pulmonary complications but also mortality at 28 days in patients with the acute respiratory distress syndrome. We randomly assigned 53 patients with early acute respiratory distress syndrome (including 28 described previously), all of whom were receiving identical hemodynamic and general support, to conventional or protective mechanical ventilation. Conventional ventilation was based on the strategy of maintaining the lowest positive end-expiratory pressure (PEEP) for acceptable oxygenation, with a tidal volume of 12 ml per kilogram of body weight and normal arterial carbon dioxide levels (35 to 38 mm Hg). Protective ventilation involved end-expiratory pressures above the lower inflection point on the static pressure-volume curve, a tidal volume of less than 6 ml per kilogram, driving pressures of less than 20 cm of water above the PEEP value, permissive hypercapnia, and preferential use of pressure-limited ventilatory modes. After 28 days, 11 of 29 patients (38 percent) in the protective-ventilation group had died, as compared with 17 of 24 (71 percent) in the conventional-ventilation group (P<0.001). The rates of weaning from mechanical ventilation were 66 percent in the protective-ventilation group and 29 percent in the conventional-ventilation group (P=0.005): the rates of clinical barotrauma were 7 percent and 42 percent, respectively (P=0.02), despite the use of higher PEEP and mean airway pressures in the protective-ventilation group. The difference in survival to hospital discharge was not significant; 13 of 29 patients (45 percent) in the protective-ventilation group died in the hospital, as compared with 17 of 24 in the conventional-ventilation group (71 percent, P=0.37). As compared with conventional ventilation, the protective strategy was associated with improved survival at 28 days, a higher rate of weaning from mechanical ventilation, and a lower rate of barotrauma in patients with the acute respiratory distress syndrome. Protective ventilation was not associated with a higher rate of survival to hospital discharge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.

            The need for lung protection is universally accepted, but the optimal level of positive end-expiratory pressure (PEEP) in patients with acute lung injury (ALI) or acute respiratory distress syndrome remains debated. To compare the effect on outcome of a strategy for setting PEEP aimed at increasing alveolar recruitment while limiting hyperinflation to one aimed at minimizing alveolar distension in patients with ALI. A multicenter randomized controlled trial of 767 adults (mean [SD] age, 59.9 [15.4] years) with ALI conducted in 37 intensive care units in France from September 2002 to December 2005. Tidal volume was set at 6 mL/kg of predicted body weight in both strategies. Patients were randomly assigned to a moderate PEEP strategy (5-9 cm H(2)O) (minimal distension strategy; n = 382) or to a level of PEEP set to reach a plateau pressure of 28 to 30 cm H(2)O (increased recruitment strategy; n = 385). The primary end point was mortality at 28 days. Secondary end points were hospital mortality at 60 days, ventilator-free days, and organ failure-free days at 28 days. The 28-day mortality rate in the minimal distension group was 31.2% (n = 119) vs 27.8% (n = 107) in the increased recruitment group (relative risk, 1.12 [95% confidence interval, 0.90-1.40]; P = .31). The hospital mortality rate in the minimal distension group was 39.0% (n = 149) vs 35.4% (n = 136) in the increased recruitment group (relative risk, 1.10 [95% confidence interval, 0.92-1.32]; P = .30). The increased recruitment group compared with the minimal distension group had a higher median number of ventilator-free days (7 [interquartile range {IQR}, 0-19] vs 3 [IQR, 0-17]; P = .04) and organ failure-free days (6 [IQR, 0-18] vs 2 [IQR, 0-16]; P = .04). This strategy also was associated with higher compliance values, better oxygenation, less use of adjunctive therapies, and larger fluid requirements. A strategy for setting PEEP aimed at increasing alveolar recruitment while limiting hyperinflation did not significantly reduce mortality. However, it did improve lung function and reduced the duration of mechanical ventilation and the duration of organ failure. clinicaltrials.gov Identifier: NCT00188058.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.

              Low-tidal-volume ventilation reduces mortality in critically ill patients with acute lung injury and acute respiratory distress syndrome. Instituting additional strategies to open collapsed lung tissue may further reduce mortality. To compare an established low-tidal-volume ventilation strategy with an experimental strategy based on the original "open-lung approach," combining low tidal volume, lung recruitment maneuvers, and high positive-end-expiratory pressure. Randomized controlled trial with concealed allocation and blinded data analysis conducted between August 2000 and March 2006 in 30 intensive care units in Canada, Australia, and Saudi Arabia. Nine hundred eighty-three consecutive patients with acute lung injury and a ratio of arterial oxygen tension to inspired oxygen fraction not exceeding 250. The control strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau airway pressures not exceeding 30 cm H2O, and conventional levels of positive end-expiratory pressure (n = 508). The experimental strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau pressures not exceeding 40 cm H2O, recruitment maneuvers, and higher positive end-expiratory pressures (n = 475). All-cause hospital mortality. Eighty-five percent of the 983 study patients met criteria for acute respiratory distress syndrome at enrollment. Tidal volumes remained similar in the 2 groups, and mean positive end-expiratory pressures were 14.6 (SD, 3.4) cm H2O in the experimental group vs 9.8 (SD, 2.7) cm H2O among controls during the first 72 hours (P < .001). All-cause hospital mortality rates were 36.4% and 40.4%, respectively (relative risk [RR], 0.90; 95% confidence interval [CI], 0.77-1.05; P = .19). Barotrauma rates were 11.2% and 9.1% (RR, 1.21; 95% CI, 0.83-1.75; P = .33). The experimental group had lower rates of refractory hypoxemia (4.6% vs 10.2%; RR, 0.54; 95% CI, 0.34-0.86; P = .01), death with refractory hypoxemia (4.2% vs 8.9%; RR, 0.56; 95% CI, 0.34-0.93; P = .03), and previously defined eligible use of rescue therapies (5.1% vs 9.3%; RR, 0.61; 95% CI, 0.38-0.99; P = .045). For patients with acute lung injury and acute respiratory distress syndrome, a multifaceted protocolized ventilation strategy designed to recruit and open the lung resulted in no significant difference in all-cause hospital mortality or barotrauma compared with an established low-tidal-volume protocolized ventilation strategy. This "open-lung" strategy did appear to improve secondary end points related to hypoxemia and use of rescue therapies. clinicaltrials.gov Identifier: NCT00182195.
                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                Hindawi Publishing Corporation
                1537-744X
                2014
                14 January 2014
                : 2014
                : 852356
                Affiliations
                1Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples “Federico II,” 80100 Naples, Italy
                2Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
                3Department of Critical Care Medicine, “Città della Salute e della Scienza” Hospital, 10121 Turin, Italy
                4Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
                Author notes

                Academic Editors: M. Elbarbary, L. M. Gillman, A. E. Papalois, and A. Shiloh

                Article
                10.1155/2014/852356
                3956547
                24719580
                3ad81617-c5b4-4cc8-8c81-11ceeb9cb687
                Copyright © 2014 M. Vargas et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 October 2013
                : 24 December 2013
                Categories
                Review Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article