15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Separate roles for Med12 and Wnt signaling in regulation of oxytocin expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Transcriptional control of oxytocinergic cell development influences social, sexual, and appetite related behaviors and is implicated in disorders such as autism and Prader-Willi syndrome. Mediator 12 (Med12) is a transcriptional coactivator required for multiple facets of brain development including subsets of serotonergic and dopaminergic neurons. We surveyed hormone gene expression within the hypothalamo-pituitary axis of med12 mutant zebrafish embryos with a focus on oxytocin ( oxt) expression. Some transcripts, such as oxt, vasopressin ( avp) and corticotrophin releasing hormone ( crh) are undetectable in the med12 mutant, while others are upregulated or downregulated to varying degrees. In med12 mutants, the expression patterns of upstream transcriptional regulators of oxytocinergic cell development remain largely intact in the pre-optic area, suggesting a more direct influence of Med12 on oxt expression. We show that Med12 is required for Wnt signaling in zebrafish. However, oxt expression is unaffected in Wnt-inhibited embryos indicating independence of Wnt signaling. In fact, overactive Wnt signaling inhibits oxt expression, and we identify a Wnt-sensitive period starting at 24 h post fertilization (hpf). Thus, Med12 and repression of Wnt signaling display critical but unrelated roles in regulating oxt expression.

          Abstract

          Summary: Mediator 12, a transcriptional coactivator, greatly enhances Wnt signaling in the developing embryo. Separate from its role in Wnt signaling, Mediator 12 is required for oxytocin expression.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.

          The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt/beta-catenin signaling regulates vertebrate limb regeneration.

            The cellular and molecular bases allowing tissue regeneration are not well understood. By performing gain- and loss-of-function experiments of specific members of the Wnt pathway during appendage regeneration, we demonstrate that this pathway is not only necessary for regeneration to occur, but it is also able to promote regeneration in axolotl, Xenopus, and zebrafish. Furthermore, we show that changes in the spatiotemporal distribution of beta-catenin in the developing chick embryo elicit apical ectodermal ridge and limb regeneration in an organism previously thought not to regenerate. Our studies may provide valuable insights toward a better understanding of adult tissue regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1.

              The bHLH-PAS transcription factor SIM1 is expressed during the development of the hypothalamic-pituitary axis in three hypothalamic nuclei: the paraventricular nucleus (PVN), the anterior periventricular nucleus (aPV), and the supraoptic nucleus (SON). To investigate Sim1 function in the hypothalamus, we produced mice carrying a null allele of Sim1 by gene targeting. Homozygous mutant mice die shortly after birth. Histological analysis shows that the PVN and the SON of these mice are hypocellular. At least five distinct types of secretory neurons, identified by the expression of oxytocin, vasopressin, thyrotropin-releasing hormone, corticotropin-releasing hormone, and somatostatin, are absent in the mutant PVN, aPV, and SON. Moreover, we show that SIM1 controls the development of these secretory neurons at the final stages of their differentiation. A subset of these neuronal lineages in the PVN/SON are also missing in mice bearing a mutation in the POU transcription factor BRN2. We provide evidence that, during development of the Sim1 mutant hypothalamus, the prospective PVN/SON region fails to express Brn2. Our results strongly indicate that SIM1 functions upstream to maintain Brn2 expression, which in turn directs the terminal differentiation of specific neuroendocrine lineages within the PVN/SON.
                Bookmark

                Author and article information

                Journal
                Biol Open
                Biol Open
                BIO
                biolopen
                Biology Open
                The Company of Biologists Ltd
                2046-6390
                15 March 2018
                12 March 2018
                12 March 2018
                : 7
                : 3
                : bio031229
                Affiliations
                Department of Oncology, Georgetown University , 4000 Reservoir Rd., Washington, DC 20057, USA
                Author notes
                [* ]Author for correspondence ( eg239@ 123456georgetown.edu )
                Author information
                http://orcid.org/0000-0001-7729-3954
                Article
                BIO031229
                10.1242/bio.031229
                5898263
                29530929
                3af5f3f0-4de3-4b96-aee9-166eac6a512a
                © 2018. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 13 November 2017
                : 28 February 2018
                Funding
                Funded by: National Cancer Institute, http://dx.doi.org/10.13039/100000054;
                Award ID: P30 CA51008
                Funded by: Georgetown University, http://dx.doi.org/10.13039/100008064;
                Categories
                Research Article

                Life sciences
                zebrafish,brain development,hypothalamus,neuroendocrine,transcriptional regulation
                Life sciences
                zebrafish, brain development, hypothalamus, neuroendocrine, transcriptional regulation

                Comments

                Comment on this article