+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Quercetin on the Efficacy of Various Chemotherapeutic Drugs in Cervical Cancer Cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          This study aimed to investigate the effects of quercetin on the efficacy of various chemotherapeutic drugs in cervical cancer cells.


          All drug experiments were performed in HeLa and SiHa cells. The cell viability was detected by Cell Counting Kit-8 assay, and cell proliferation was estimated by bromodeoxyuridine assay. CompuSyn software was utilized to calculate the combination index (CI) and evaluate the synergistic or antagonistic effect of quercetin with cisplatin, paclitaxel, 5-fluorouracil and doxorubicin on cell viability. Cell migration and invasion abilities were detected by transwell assays, and cell apoptosis was measured by flow cytometry. The expression levels of matrix metallopeptidase 2 (MMP2), ezrin, P-glycoprotein (P-Gp) and methyltransferase-like 3 (METTL3) protein treated with various drugs were analyzed by Western blotting.


          Quercetin inhibited the viability of HeLa and SiHa cells in a dose- and time-dependent manner. The CI values of quercetin with cisplatin, paclitaxel, 5-fluorouracil and doxorubicin were <1, >1, >1 and >1, respectively. The effect of combination of quercetin and cisplatin on cell proliferation was stronger than their individual effects. Co-treatment group could inhibit more cell migration and invasion in contrast to single-drug group. Besides, quercetin combined with cisplatin group induced more cell apoptosis in contrast to single-drug group. The results of Western blotting showed that the expression levels of MMP2, ezrin, P-Gp and METTL3 in co-treatment group were lower than in cisplatin group, respectively.


          Quercetin and cisplatin had synergistic inhibitory effect on cervical cancer cells. Quercetin might enhance the antitumor effect of cisplatin via inhibiting proliferation, migration and invasion and elevating apoptosis through weakening MMP2, ezrin, METTL3 and P-Gp expression of cancer cells.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2020

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
            • Record: found
            • Abstract: found
            • Article: not found

            Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.

            The median-effect equation derived from the mass-action law principle at equilibrium-steady state via mathematical induction and deduction for different reaction sequences and mechanisms and different types of inhibition has been shown to be the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch equation, and Scatchard equation. It is shown that dose and effect are interchangeable via defined parameters. This general equation for the single drug effect has been extended to the multiple drug effect equation for n drugs. These equations provide the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI 1 indicate synergism, additive effect, and antagonism, respectively. Based on these algorithms, computer software has been developed to allow automated simulation of synergism and antagonism at all dose or effect levels. It displays the dose-effect curve, median-effect plot, combination index plot, isobologram, dose-reduction index plot, and polygonogram for in vitro or in vivo studies. This theoretical development, experimental design, and computerized data analysis have facilitated dose-effect analysis for single drug evaluation or carcinogen and radiation risk assessment, as well as for drug or other entity combinations in a vast field of disciplines of biomedical sciences. In this review, selected examples of applications are given, and step-by-step examples of experimental designs and real data analysis are also illustrated. The merging of the mass-action law principle with mathematical induction-deduction has been proven to be a unique and effective scientific method for general theory development. The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix metalloproteinases: regulators of the tumor microenvironment.

              Extracellular proteolysis mediates tissue homeostasis. In cancer, altered proteolysis leads to unregulated tumor growth, tissue remodeling, inflammation, tissue invasion, and metastasis. The matrix metalloproteinases (MMPs) represent the most prominent family of proteinases associated with tumorigenesis. Recent technological developments have markedly advanced our understanding of MMPs as modulators of the tumor microenvironment. In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner. These aspects of MMP function are reorienting our approaches to cancer therapy. Copyright 2010 Elsevier Inc. All rights reserved.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                15 February 2021
                : 15
                : 577-588
                [1 ]Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, 325027, People’s Republic of China
                Author notes
                Correspondence: Xueqiong Zhu Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University , No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, People’s Republic of ChinaTel +86 577 88002796 (office)Fax +86 577 88002796 Email zjwzzxq@163.com

                These authors contributed equally to this work

                © 2021 Xu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 6, Tables: 1, References: 48, Pages: 12
                Funded by: Natural Science Foundation of China, open-funder-registry 10.13039/501100001809;
                Funded by: Science and Technology Planning Project of Wenzhou City;
                The study was supported by funds from Natural Science Foundation of China (No. 81974282) and grants from Science and Technology Planning Project of Wenzhou City (No. Y2020187).
                Original Research

                Pharmacology & Pharmaceutical medicine

                chemosensitivity, quercetin, cervical cancer, cisplatin


                Comment on this article