3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Age‐related changes in intestinal immunity and the microbiome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references244

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

            A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors

              Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizeable minority of cancer patients. Here, we show that primary resistance to ICI can be due to abnormal gut microbiome composition. Antibiotics (ATB) inhibited the clinical benefit of ICI in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICI (but not from non-responding patients) into germ-free or ATB-treated mice ameliorated the antitumor effects of PD-1 blockade. Metagenomics of patient stools at diagnosis revealed correlations between clinical responses to ICI and the relative abundance of Akkermansia muciniphila. Oral supplementation with A. muciniphila post-FMT with non-responder feces restored the efficacy of PD-1 blockade in an IL-12-dependent manner, by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into tumor beds.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Leukocyte Biology
                J Leukoc Biol
                Wiley
                0741-5400
                1938-3673
                June 2021
                October 05 2020
                June 2021
                : 109
                : 6
                : 1045-1061
                Affiliations
                [1 ]Department of Surgery Division of GI Trauma and Endocrine Surgery and Burn Research Program University of Colorado Denver Aurora Colorado USA
                [2 ]Immunology Graduate Program University of Colorado Denver Aurora Colorado USA
                [3 ]Department of Pharmaceutical Sciences Skaggs School of Pharmacy and Pharmaceutical Sciences University of Colorado Denver Aurora Colorado USA
                [4 ]GI and Liver Innate Immune Program University of Colorado Denver Aurora Colorado USA
                [5 ]Medical Scientist Training Program University of Colorado Denver Aurora Colorado USA
                Article
                10.1002/JLB.3RI0620-405RR
                33020981
                3b0be6c1-9dfe-41ad-9427-3e79da6caf04
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article