8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vivo characterization of doxycycline-mediated protection of aortic function and structure in a mouse model of Marfan syndrome-associated aortic aneurysm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aortic aneurysm is the most life-threatening complication in Marfan syndrome (MFS) patients. Doxycycline, a nonselective matrix metalloproteinases inhibitor, was reported to improve the contractile function and elastic fiber structure and organization in a Marfan mouse aorta using ex vivo small chamber myography. In this study, we assessed the hypothesis that a long-term treatment with doxycycline would reduce aortic root growth, improve aortic wall elasticity as measured by pulse wave velocity, and improve the ultrastructure of elastic fiber in the mouse model of MFS. In our study, longitudinal measurements of aortic root diameters using high-resolution ultrasound imaging display significantly decreased aortic root diameters and lower pulse wave velocity in doxycycline-treated Marfan mice starting at 6 months as compared to their non-treated MFS counterparts. In addition, at the ultrastructural level, our data show that long-term doxycycline treatment corrects the irregularities of elastic fibers within the aortic wall of Marfan mice to the levels similar to those observed in control subjects. Our findings underscore the key role of matrix metalloproteinases during the progression of aortic aneurysm, and provide new insights into the potential therapeutic value of doxycycline in blocking MFS-associated aortic aneurysm.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function?

          Arterial distensibility measures, generally from pulse-wave velocity (PWV), are widely used with little knowledge of relationships to patient outcome. We tested whether aortic PWV predicts cardiovascular and all-cause mortality in type 2 diabetes and glucose-tolerance-tested (GTT) multiethnic population samples. Participants were randomly sampled from (1) a type 2 diabetes outpatient clinic and (2) primary care population registers, from which nondiabetic control subjects were given a GTT. Brachial blood pressures and Doppler-derived aortic PWV were measured. Mortality data over 10 years' follow-up were obtained. At any level of systolic blood pressure (SBP), aortic PWV was greater in subjects with diabetes than in controls. Mortality risk doubled in subjects with diabetes (hazard ratio 2.34, 95% CI 1.5 to 3.74) and in those with glucose intolerance (2.12, 95% CI 1.11 to 4.0) compared with controls. For all groups combined, age, sex, and SBP predicted mortality; the addition of PWV independently predicted all-cause and cardiovascular mortality (hazard ratio 1.08, 95% CI 1.03 to 1.14 for each 1 m/s increase) but displaced SBP. Glucose tolerance status and smoking were other independent contributors, with African-Caribbeans experiencing reduced mortality risk (hazard ratio 0.41, 95% CI 0.25 to 0.69). Aortic PWV is a powerful independent predictor of mortality in both diabetes and GTT population samples. In displacing SBP as a prognostic factor, aortic PWV is probably further along the causal pathway for arterial disease and may represent a useful integrated index of vascular status and hence cardiovascular risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aortic stiffness is an independent predictor of fatal stroke in essential hypertension.

            Pulse pressure is a stronger predictor of cardiovascular events than systolic or diastolic blood pressure in large cohorts of French and North American patients. However, its influence on stroke is controversial. Large-artery stiffness is the main determinant of pulse pressure. The influence of arterial stiffness on the occurrence of stroke has never been demonstrated. Our aim was to establish the relationship between aortic stiffness and stroke death in hypertensive patients. We included, in a longitudinal study, 1715 essential hypertensive patients who had a measurement of arterial stiffness at entry (ie, between 1980 and 2001) and no overt cardiovascular disease or symptoms. Mean follow-up was 7.9 years. At entry, aortic stiffness was assessed from the carotid-femoral pulse wave velocity. A Cox proportional hazard regression model was used to estimate the relative risk (RR) of stroke and coronary deaths. Mean+/-SD age at entry was 51+/-13 years. Twenty-five fatal strokes and 35 fatal coronary events occurred. Pulse wave velocity significantly predicted the occurrence of stroke death in the whole population. There was a RR increase of 1.72 (95% CI, 1.48 to 1.96; P<0.0001) for each SD increase in pulse wave velocity (4 m/s). The predictive value of pulse wave velocity remained significant (RR=1.39 [95% CI, 1.08 to 1.72]; P=0.02) after full adjustment for classic cardiovascular risk factors, including age, cholesterol, diabetes, smoking, mean blood pressure, and pulse pressure. In this population, pulse pressure significantly predicted stroke in univariate analysis, with a RR increase of 1.33 (95% CI, 1.16 to 1.51) for each 10 mm Hg of pulse pressure (P<0.0001) but not after adjustment for age (RR=1.19 [95% CI, 0.96 to 1.47]; P=0.10). This study provides the first evidence, in a longitudinal study, that aortic stiffness is an independent predictor of fatal stroke in patients with essential hypertension.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms.

              Abdominal aortic aneurysms represent a life-threatening condition characterized by chronic inflammation, destructive remodeling of the extracellular matrix, and increased local expression of matrix metalloproteinases (MMPs). Both 92-kD gelatinase (MMP-9) and macrophage elastase (MMP-12) have been implicated in this disease, but it is not known if either is necessary in aneurysmal degeneration. We show here that transient elastase perfusion of the mouse aorta results in delayed aneurysm development that is temporally associated with transmural mononuclear inflammation, increased local production of several elastolytic MMPs, and progressive destruction of the elastic lamellae. Elastase-induced aneurysmal degeneration was suppressed by treatment with a nonselective MMP inhibitor (doxycycline) and by targeted gene disruption of MMP-9, but not by isolated deficiency of MMP-12. Bone marrow transplantation from wild-type mice prevented the aneurysm-resistant phenotype in MMP-9-deficient animals, and wild-type mice acquired aneurysm resistance after transplantation from MMP-9-deficient donors. These results demonstrate that inflammatory cell expression of MMP-9 plays a critical role in an experimental model of aortic aneurysm disease, suggesting that therapeutic strategies targeting MMP-9 may limit the growth of small abdominal aortic aneurysms.
                Bookmark

                Author and article information

                Contributors
                mesfan@midwestern.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                14 February 2019
                14 February 2019
                2019
                : 9
                : 2071
                Affiliations
                [1 ]ISNI 0000 0001 2288 9830, GRID grid.17091.3e, Department of Anesthesiology, Pharmacology and Therapeutics, British Columbia Children’s Hospital Research Institute, , University of British Columbia, ; Vancouver, BC Canada
                [2 ]ISNI 0000 0004 1936 7494, GRID grid.61971.38, Department of Biomedical Physiology and Kinesiology, , Simon Fraser University, ; Burnaby, BC Canada
                [3 ]ISNI 0000 0001 2288 9830, GRID grid.17091.3e, Department of Anesthesiology, Pharmacology and Therapeutics, Centre for Heart Lung Innovation, St. Paul’s Hospital, , University of British Columbia, ; Vancouver, BC Canada
                [4 ]ISNI 0000 0004 0405 2449, GRID grid.470113.0, Department of Biomedical Sciences, College of Graduate Studies, , Midwestern University, ; Glendale, Arizona USA
                [5 ]ISNI 0000 0001 2288 9830, GRID grid.17091.3e, Children’s Heart Centre, British Columbia Children’s Hospital, , University of British Columbia, ; Vancouver, BC Canada
                [6 ]ISNI 0000000419368956, GRID grid.168010.e, Department of Cardiothoracic Surgery, School of Medicine, , Stanford University, ; Palo Alto, California USA
                Author information
                http://orcid.org/0000-0002-2586-3115
                http://orcid.org/0000-0003-3218-7781
                Article
                38235
                10.1038/s41598-018-38235-6
                6376062
                30765726
                3b0ede96-139a-4e92-a2d4-5865ddff6920
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 June 2018
                : 21 December 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000024, Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Sant&amp;#x00E9; du Canada);
                Award ID: MOP-111266
                Award ID: MOP-111266
                Award ID: MOP-111266
                Award ID: MOP-111266
                Award ID: MOP-111266
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article