4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transition‐Metal Phosphides: Activity Origin, Energy‐Related Electrocatalysis Applications, and Synthetic Strategies

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references244

          • Record: found
          • Abstract: found
          • Article: not found

          Combining theory and experiment in electrocatalysis: Insights into materials design

          Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. We conclude by extending this framework to emerging clean energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opportunities and challenges for a sustainable energy future.

            Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The chemistry and applications of metal-organic frameworks.

              Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                November 2020
                September 06 2020
                November 2020
                : 30
                : 45
                : 2004009
                Affiliations
                [1 ]Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu hydrogen Valley Foshan 528200 P. R. China
                [2 ]State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
                [3 ]Institute for Clean Energy & Advanced Materials School of Materials & Energy Southwest University Chongqing 400715 P. R. China
                [4 ]School of Engineering Faculty of Applied Science University of British Columbia Kelowna BC V1V 1V7 Canada
                Article
                10.1002/adfm.202004009
                3b1009c5-fb58-4e03-809a-fd1d4e5b4bbb
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article