67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CLIP identifies Nova-regulated RNA networks in the brain.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nova proteins are neuron-specific antigens targeted in paraneoplastic opsoclonus myoclonus ataxia (POMA), an autoimmune neurologic disease characterized by abnormal motor inhibition. Nova proteins regulate neuronal pre-messenger RNA splicing by directly binding to RNA. To identify Nova RNA targets, we developed a method to purify protein-RNA complexes from mouse brain with the use of ultraviolet cross-linking and immunoprecipitation (CLIP).Thirty-four transcripts were identified multiple times by Nova CLIP.Three-quarters of these encode proteins that function at the neuronal synapse, and one-third are involved in neuronal inhibition.Splicing targets confirmed in Nova-/- mice include c-Jun N-terminal kinase 2, neogenin, and gephyrin; the latter encodes a protein that clusters inhibitory gamma-aminobutyric acid and glycine receptors, two previously identified Nova splicing targets.Thus, CLIP reveals that Nova coordinately regulates a biologically coherent set of RNAs encoding multiple components of the inhibitory synapse, an observation that may relate to the cause of abnormal motor inhibition in POMA.

          Related collections

          Author and article information

          Journal
          Science
          Science (New York, N.Y.)
          American Association for the Advancement of Science (AAAS)
          1095-9203
          0036-8075
          Nov 14 2003
          : 302
          : 5648
          Affiliations
          [1 ] Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA.
          Article
          302/5648/1212
          10.1126/science.1090095
          14615540
          3b1624ee-6460-448c-a747-ee9002aaaeb1
          History

          Comments

          Comment on this article